
Search for WISPs gains momentum
Interest is growing in new experiments that probe dark-matter candidates such as axions and other very weakly interacting sub-eV particles.
Thank you for registering
If you'd like to change your details at any time, please visit My account
Interest is growing in new experiments that probe dark-matter candidates such as axions and other very weakly interacting sub-eV particles.
XENON1T is a 3D-imaging liquid-xenon time projection chamber located at Gran Sasso National Laboratory in Italy.
Dijet searches look for a resonance in the two-jet invariant mass spectrum.
Several phenomenological studies have suggested that anomalies in B decays could be explained by the existence of hypothetical new particles which couple to both leptons and quarks.
Through their mixing with the Standard Model neutrinos, sterile Majorana neutrinos could be produced at the LHC in leptonic W-boson decays.
While the dark photon does not couple directly to Standard Model particles, quantum-mechanical mixing between the photon and dark-photon fields can generate a small interaction.
Not only can SUSY accommodate dark matter and gauge–force unification at high energy, it offers a natural explanation for why the Higgs boson is so light compared to the Planck scale.
Neutrinoless double beta-decay is only possible if neutrinos and antineutrinos are identical or “Majorana” particles.
Many Standard Model extensions predict new resonances that can decay into a pair of bosons, for example: VV, Vh, Vγ and γγ.
Fermilab’s short-baseline neutrino programme targets sterile neutrinos.