By John Richard Gott
Princeton University Press
The observation of the night sky is as old as humankind itself. Cosmology, however, has only achieved the status of “science” in the past century or so. In this book, Gott accompanies the reader through the birth of this new science and our growing understanding of the universe as a whole, starting from the observation by Hubble and others in the 1920s that distant galaxies are receding away from us. This was one of the most important discoveries in the history of science because it shifted the position of humans farther away from the centre of the cosmos and showed that the universe is not eternal, but had a beginning. The philosophical implications were hard to digest, even for Einstein, who invented the cosmological constant such that his equations of general relativity could have a static solution.
Following the first observations of distant galaxies, astronomers began to draw a comprehensive map of the observable universe. They played the same role as the explorers travelling around our planet, except that they could only sit where they were and receive light from distant objects, like the faded photography of a lost past.
After an introduction to the early days of cosmology, the book becomes more personal, and the reader feels drawn in to the excitement of actually doing research. Gott’s account of cosmology is given through the lens of his own research, making the book slightly biased towards the physics of the large-scale structure of the universe, but also more focused and definitely captivating for the reader.
The overarching theme of the book is the quest to understand the shape of the “cosmic web”, which is the distribution of galaxies and voids in a universe that is homogeneous only on very large scales. Tiny fluctuations in the matter density, ultimately quantum in origin, grow via gravity to weave the web.
In graduate school, under the supervision of Jim Gunn, Gott wrote his most cited paper, proposing a mathematical model of the gravitational collapse of small density fluctuations. Here, the readers are given a flavour of the way real research is carried out. The author describes in detail the physics involved in the topic, as well as how the article was born and completed and how it took on a life of its own to become a classic.
The author’s investigation of the large-scale structure intertwines with his passion for topology. He was fascinated by polyhedrons with an infinite number of faces, which were the subject of an award-winning project that he developed in high school and of his first scientific article published in a mathematics journal.
At the time, when astronomical surveys were covering only a small portion of the sky, it was unclear how the cosmic structures assembled. American cosmologists thought that galaxies gathered in isolated clusters floating in a low-density universe, like meatballs in a soup. On the other hand, Soviet scientists maintained that the universe was made up of a connected structure of walls and filaments, where voids appear like holes in a Swiss cheese.
Does the 3D map of the universe resemble a meatball stew or a Swiss cheese? Neither, Gott says. With his collaborators, he proposed that the cosmic web is topologically like a sponge, where voids and galaxy clusters form two interlocking regions, much like the infinite polyhedrons Gott studied in his youth.
The reader is given clear and mathematically precise descriptions of the methods used to demonstrate the idea, which was later confirmed by deeper and larger astronomical observations (in 3D), and by the analysis of the cosmic microwave background (in 2D). By that time, we had the theory of cosmological inflation to explain a few of the puzzles regarding the origin of the universe. Remarkably, inflation predicts tiny quantum fluctuations in the fabric of space–time, giving rise to a symmetry between higher and lower density perturbations, leading to the observed sponge-like topology.
Therefore, by the end of the 20th century, the pieces of our understanding of the universe were falling into place and, in 1998, the discovery that the universe is accelerating allowed us to start thinking about the ultimate fate of the cosmos. This is the subject of the last chapter, an interesting mix of sound predictions (for the next trillion years) and speculative ideas (in a future so far away that it is hard to think about), ending the book with a question – rather than an exclamation – mark.
This is not only a good popular science book that achieves a balance between mathematical precision and a layperson’s intuition. It is also a text about the day-to-day life of a researcher, describing details of how science is actually done, the excitement of discovery and the disappointment of following a wrong path. It is a book for readers curious about cosmology, for researchers in other fields, and for young scientists, who will be inspired by an elder one to pursue the fascinating exploration of nature.