By Robert Laughlin
Basic Books
Hardback: £17.99 $24.99
Nearly 90% of the world’s economy is driven by the massive use of fossil fuels. The US spends one-sixth of its gross domestic product on oil alone, without counting the important costs of coal and natural gas, even though its use of oil and the other fossil fuels has progressively decreased since the mid-1970s. While the debate on fossil fuels continues to rage on both sides of the Atlantic, Robert Laughlin, professor of physics at Stanford University and Nobel Laureate for the fractional Hall effect, has written Powering the Future – a hypothetical voyage through the future, where the human race will have demands and expectations similar to those of today but where technologies will probably be quite different.
The book is essentially one of two halves. The first half contains the main chapters, where all of the essential statements and the logical lines of the various arguments are developed with an informal style. These are then complemented by the second half, which consists of a delightful set of notes. The notes encourage readers to form their own opinions on specific subjects using a number of tools, which range from assorted references to simplified quantitative estimates.
Treatises on energy problems that are written by political scientists are often scientifically inaccurate; specialized monographs are sometimes excessively technical. This book uses an intermediate register where the quantitative aspects of a problem are discussed but the overall presentation is not pedantic. Of the numerous examples, here are two short ones. What is the total precipitation that falls in one year on the world? The answer is “one metre of rain, the height of a golden retriever” (page 7 and note on page 127). What is the power-carrying capacity for the highest voltage currently used in North America? The answer is “2 billion watts” (page 46 and note on page 156) and is derived with simple mathematical tools.
Laughlin’s chain of arguments forms a composite approach to the energy challenge, where fossil fuels will still be needed 200 years from now to fly aeroplanes. Nuclear power plants will inevitably (but cautiously) be exploited and solar energy will offer decisive solutions in limited environments (see chapter nine, “Viva Las Vegas!”). While the author acknowledges that market forces (and not green technology) will be the future driver of energy innovation, the book does not explicitly support any partisan cause but tries to inspect thoroughly the issues at stake.
A few tweets may not suffice to develop informed views on the energy future of the human race. On the other hand, Powering the Future will certainly stimulate many readers (including, I hope, physicists) to form their own judgements and to challenge some of the canned statements that proliferate on the internet these days.