Consisting only of an electron and a positron, positronium (Ps) offers unique exploration of a purely leptonic matter–antimatter system. Traditionally, experiments have relied on formation processes that produce clouds of Ps with a large velocity distribution, limiting the precision of spectroscopic studies due to the large Doppler broadening of the Ps transition lines. Now, after almost 10 years of effort, the AEgIS collaboration at CERN’s Antiproton Decelerator has experimentally demonstrated laser-cooling of Ps for the first time, opening new possibilities for antimatter research.
“This is a breakthrough for the antimatter community that has been awaited for almost 30 years, and which has both a broad physics and technological impact,” says AEgIS physics coordinator Benjamin Rienacker of the University of Liverpool. “Precise Ps spectroscopy experiments could reach the sensitivity to probe the gravitational interaction in a two-body system (with 50% on-shell antimatter mass and made of point-like particles) in a cleaner way than with antihydrogen. Cold ensembles of Ps could also enable Bose–Einstein condensation of an antimatter compound system that provides a path to a coherent gamma-ray source, while allowing precise measurements of the positron mass and fine structure constant, among other applications.”
Laser cooling, which was applied to antihydrogen atoms for the first time by the ALPHA experiment in 2021 (CERN Courier May/June 2021 p9), slows atoms gradually during the course of many cycles of photon absorption and emission. This is normally done using a narrowband laser, which emits light with a small frequency range. By contrast, the AEgIS team uses a pulsed alexandrite-based laser with high intensity, large bandwidth and long pulse duration to meet the cooling requirements. The system enabled the AEgIS team to decrease the temperature of the Ps atoms from 380 K to 170 K, corresponding to a decrease in the transversal component of the Ps velocity from 54 to 37 km s–1.
The feat presents a major technical challenge since, unlike antihydrogen, Ps is unstable and annihilates with a lifetime of only 142 ns. The use of a large bandwidth laser has the advantage of cooling a large fraction of the Ps cloud while increasing the effective lifetime, resulting in a higher amount of Ps after cooling for further experimentation.
“Our results can be further improved, starting from a cryogenic Ps source, which we also know how to build in AEgIS, to reach our dream temperature of 10 K or lower,” says AEgIS spokesperson Ruggero Caravita of INFN-TIFPA. “Other ideas are to add a second cooling stage with a narrower spectral bandwidth set to a detuning level closer to resonance, or by coherent laser cooling.”
Further reading
AEgIS Collab. 2024 Phys. Rev. Lett. 132 083402.