By Mark Thomson
Cambridge University Press
Hardback: £40 $75
Also available as an e-book, and at the CERN bookshop
Mark Thomson has written a wonderful new introductory textbook on particle physics. As the title suggests, it is modern and up-to-date. It contains several chapters on the latest developments in neutrino physics, B-meson physics, on the LHC and of course also on the Higgs boson. All the same, as new data pour in, the latter part on the Higgs boson will have to be updated in future editions, of which I expect there to be many.
The book is aimed at students who are already familiar with quantum mechanics and special relativity, but not quantum field theory. Interestingly, although written by an experimentalist, I would say that this book, in level, is most closely comparable to the well-known textbook by Francis Halzen and Alan Martin, both theorists. However, it is an improvement in many ways.
It starts out with an extensive discussion on what can be measured by detectors, as well as the basics of scattering theory, and the Klein–Gordon and Dirac equations. Thomson then guides the reader carefully through pedagogical steps to the computation of matrix elements and cross-sections for scattering processes at fixed-target experiments and colliders. He uses the helicity-eigenstate basis, which helps to make the underlying physics in the reactions more evident. As a theorist, I might have enjoyed an emphasis on two-component fermions, but this might not be so readily digestible for experimentalists.
I found the chapter on flavour SU(3) well written and elucidating. The chapter on neutrino physics discusses the implications of the measurements of θ13 nicely, and presents the MINOS and Sudbury Neutrino Observatory experiments and their relevance to the determination of the neutrino parameters. Regarding neutrino oscillations, Thomson points out rightly the necessity of the wave-packet treatment, but unfortunately gives no reference to a more detailed discussion, such as the paper by Boris Kayser. The gauge principle and spontaneous symmetry breaking are explained in great detail. The emphasis throughout is always on explicit and concrete computations.
The book is well written – it is easy to read, with clear pedagogical lines of reasoning, and the layout is pleasing. There are numerous homework problems at the end of each chapter. My only criticism would be that since Thomson is an experimentalist, I expected a modern version of Don Perkins’ book, with many details on experimental techniques – that is, a different book. However, as I am teaching an introduction to theory this autumn, I will definitely be using this book.