Comsol -leaderboard other pages

Topics

Science communication: a new frontier

In the world of communication, everyone has a role to play. During the past two decades, the ability of researchers to communicate their work to funding agencies, policymakers, entrepreneurs and the public at large has become an increasingly important part of their job. Scientists play a fundamental role in society, generally enjoying an authoritative status, and this makes us accountable.

Science communication is not just a way to share knowledge, it is also about educating new generations in the scientific approach and attracting young people to scientific careers. In addition, fundamental research drives the development of technology and innovation, playing an important role in providing solutions in challenging areas such as health care, the provision of food and safety. This obliges researchers to disseminate the results of their work.

Evolving attitudes

Although science communication is becoming increasingly unavoidable, the skills it requires are not yet universal and some scientists are not prepared to do it. Of course there are risks involved. Communication can distract individuals from research and objectives, or, if done badly, can undermine the very messages that the scientist needs to convey. The European Researchers’ Night is a highly successful annual event that was initiated in 2005 as a European Commission Marie Skłodowska-Curie Action, and offers an opportunity for scientists to get more involved in science communication. It falls every final Friday of September, and illustrates how quickly attitudes are evolving.

In 2006, with a small group of researchers from the Italian National Institute for Nuclear Physics (INFN) located close to Frascati, we took part in one of the first Researchers’ Night events. Frascati is surrounded by important scientific institutions and universities, and from the start the Italian National Agency for New Technologies, Energy and Sustainable Economic Development, the European Space Agency and the National Institute for Astrophysics joined the collaboration with INFN, along with the Municipality of Frascati and the Cultural and Research Department of the Lazio region, which co-funded the initiative.

Since then, thousands of researchers, citizens, public and private institutions have worked together to change the public perception of science and of the infrastructure in the Frascati and Lazio regions, supported by the programme. Today, after 13 editions, it involves more than 60 scientific partners spread from the north to the south of Italy in 30 cities, and attracts more than 50,000 attendees, with significant media impact (figure 1). Moreover, it has now evolved to become a week-long event, is linked to many related events throughout the year, and has triggered many institutions to develop their own science-communication projects.

Analysing the successive Frascati Researchers’ Night projects allows a better understanding of the evolution of science-communication methodology. Back in 2006, scientists started to open their laboratories and research infrastructures to present their jobs in the most comprehensible way, with a view to increasing the scientific literacy of the public and to fill their “deficit” of knowledge. They then tried to create a direct dialogue by meeting people in public spaces such as squares and bars, discussing the more practical aspects of science, such as how public money is spent, and how much researchers are responsible for their work. Those were the years in which the socio-economic crisis started to unfold. It was also the beginning of the European Union’s Horizon 2020 programme, when economic growth and terms such as “innovation” started to substitute scientific progress and discovery. It was therefore becoming more important than ever to engage with the public and keep the science flag flying.

In recent years, this approach has changed. Two biannual projects that are also part of a Marie Skłodowska-Curie Action – Made in Science and BEES (BE a citizEn Scientist) underline a different vision of science and of the methodology of communication. Made in Science (which was live between 2016 and 2017) was supposed to represent the “trademark” of research, aiming to communicate to society the importance of the science production chain in terms of quality, identity, creativity, know-how and responsibility. In this chain, which starts from fundamental research and ends with social benefits, no one is excluded and must take part in the decision process and, where possible, in the research itself. Its successor, BEES (2018–2019), on the other hand, aims to bring citizens up close to the discovery process, showing how long it takes and how it can be tough and frustrating. Both projects follow the most recent trends in science communication based on a participative or “public engagement” model, rather than the traditional “deficit” model. Here, researchers are not the main actors but facilitators of the learning process with a specific role: the expert one.

Nerd or not a nerd?

Nevertheless, this evolution of science communication isn’t all positive. There are many examples of problems in science communication: the explosion of concerns about science (vaccines, autism, GMO, homeopathy, etc); the avoidance of science and technology in preference to returning to a more “natural” life; the exploitation of science results (positive or negative) to support conspiracy theories or influence democracies; and overplaying the benefits for knowledge and technology transfer, to list a few examples. Last but not least, some strong bias still remains among both scientists and audiences, limiting the effectiveness of communication.

The first, and probably the hardest, is the stereotype bias: are you a “nerd”, or do you feel like a nerd? Often scientists refer to themselves as a category that can’t be understood by society, consequently limiting their capacity to interact with the public. On the other hand, scientists are sometimes real nerds, and seen by the public as nerds. This is true for all job categories, but in the case of scientists this strongly conditions their ability to communicate.

Age, gender and technological bias also still play a fundamental role, especially in the most developed European countries. Young people may understand science and technology more easily, while women still do not seem to have full access to scientific careers and to the exploitation of technology. Although the transition from a deficit to a participative model is already common in education and democratic societies, it is not yet completed in science, which is likely because of the strong bias that still seems to exist among researchers and audiences. The Marie Skłodowska-Curie European Researchers’ Night is a powerful way in which scientists can address such issues.

Artistic encounters of the quantum kind

Take a leap and enter, past the chalkboard wall filled with mathematical equations written, erased and written again, into the darkened room of projected questions where it all begins. What is reality? How do we describe nature? And for that matter, what is science and what is art?

Quàntica, which opened on 9 April at the Centre de Cultural Contemporània de Barcelona, invites you to explore quantum physics through the lens of both art and science. Curated by Mónica Bello, head of Arts at CERN, and art curator José-Carlos Mariátegui, with particle physicist José Ignacio Latorre serving as its scientific adviser, Quàntica is the second iteration of an exhibition that brings together 10 artworks resulting from Collide International art residences at CERN.

The exhibition illustrates how interdisciplinary intersections can present scientific concepts regarded by the wider public as esoteric, in ways that bridge the gap, engage the senses and create meaning. Punctuating each piece is the idea that the principles of quantum physics, whether we like it or not, are pervasive in our lives today – from technological applications in smart phones and satellites to our philosophies and world views.

Nine key concepts – “scales”, “quantum states”, “overlap”, “intertwining”, “indeterminacy”, “randomness”, “open science”, “everyday quantum” and “change-evolution” – guide visitors through the meandering hallway. Each display point prompts pause to consider a question that underlies the fundamental principles of quantum physics. Juxtaposed in the shared space is an artist-made particle detector and parts of experiments displayed as artistic objects. Video art installations are interspersed with video interviews of CERN physicists, including Helga Timko, who asks: what if we were to teach children quantum physics at a very young age, would they perceive the world as we do? On the ceiling above is a projection of a spiral galaxy, a part of Juan Cortés’ Supralunar. Inspired by Vera Rubin’s work on dark matter and the rotational motion of galaxies, Cortés made a two-part multisensorial installation: a lens through which you see flashing lights and vibrating plates to rest your chin and experience, on some level, the intensity of a galaxy’s formation.

From the very large scale, move to the very small. A recording of Richard Feynman explaining the astonishing double-slit experiment plays next to a standing demonstration allowing you to observe the counterintuitive possibilities that exist at the subatomic level. You can put on goofy glasses for Lea Porsager’s Cosmic Strike, an artwork with a sense of humour, which offers an immersive 3D animation described as “hard science and loopy mysticism”. She engages the audience’s imagination to meditate on being a neutrino as it travels through the neutrino horn, one of the many scientific artefacts from CERN’s archives that pepper the path.

Around the corner is Erwin Schrödinger’s 1935 article where he first used the word “Verschränkung” (or entanglement) and Anton Zeilinger’s notes explaining the protocol for quantum teleportation. Above these is projected a scene from Star Trek, which popularised the idea of teleportation.

The most visually striking piece in the exhibition is Cascade by Yunchul Kim, made up of three live elements. The first part is Argos (see image), splayed metallic hands that hang like lamps from the ceiling – an operational muon detector made of 41 channels blinking light as it records the particles passing through the gallery. Each signal triggers the second element, Impulse, a chandelier-like fluid-transfer system that sends drops of liquid through microtubes that flow into transparent veins of the final element, Tubular. Kim, who won the 2016 Arts at CERN Collide International Award, is an artist who employs rigorous methods and experiments in his laboratory with liquid and materials. Cascade encapsulates the surprising results knowledge-sharing can yield.

Quàntica is a must-see for anyone who views art and science as opposite ends of the academic spectrum. The first version of the exhibition was held at Liverpool in the UK last year. Co-produced by the ScANNER network (CERN, FACT, CCCB, iMAL and Le Lieu Unique), the exhibition continues until 24 September in Barcelona, before travelling to Brussels.

Rutherford in three movements

Professor Radium, the Atom Splitter, the Crocodile. Each is a nickname pointing to Ernest Rutherford, who made history by explaining radioactivity, discovering the proton and splitting the atom. All his scientific and personal milestones are described in great detail in the three-part documentary Rutherford, produced by Spacegirls Production Ltd in 2011.

Accompanied by physics historian John Campbell, the viewer learns about this great scientist from his ordinary childhood as a “Kiwi boy” to his untimely death in 1937. Historical reconstructions and trips to the places (New Zealand, the UK and Canada) that characterised his life bring Rutherford back to life.

When it was still heresy to think that there existed objects smaller than an atom, Rutherford was exploring the secrets of the invisible. During his first stay in Cambridge (UK), he discovered that uranium emits two types of radiation, which he named alpha and beta. Then, continuing his research at McGill University (Canada), he discovered that radioactivity has to do with the instability of the atom. He was rewarded with the Nobel Prize in Chemistry in 1908, and called Professor Radium after a comic book character of that name. In those years, people did not know the effects of radiation and “radio-toothpaste” was available to buy.

Then in Manchester (UK), he conducted the first artificial-induced nuclear reaction and described a new model of the atom, where a proton is like a fly in the middle of an empty cathedral. He fired alpha particles at nitrogen gas and obtained oxygen plus hydrogen, thus the epithet of the world’s first “atom splitter”.

In-between these big discoveries, the documentary points out that Rutherford blew tobacco smoke into his ionisation chamber, providing the groundwork for modern smoke detectors, proposed a more accurate dating system for the Earth’s age based on the rate of decay of uranium atoms, and campaigned for women’s opportunities and saving scientists from war.

The name “Crocodile” came later, from soviet physicist Pyotr Kapitza, as it is an animal that never turns back – or perhaps a reference to Rutherford’s loud voice that preceded his visits. The carving of a crocodile on the outer wall of the Mond Laboratory at the Cavendish site, commissioned by Kapitza, still reminds Cambridge students and tourists of this outstanding physicist.

  • Spacegirls Production Ltd

Building scientific resilience

Brest-Litovsk, Utrecht, Westphalia… at first sight, intergovernmental treaties belong more to the world of Bismarck and Napoleon than that of modern science. Yet, in March this year we celebrated the signing of a new treaty establishing the world’s largest radio telescope, the Square Kilometre Array (SKA). Why use a tool of 19th-century great-power politics to organise a 21st century big-science project?

Large-science projects like SKA require multi-billion budgets and decades-long commitment. Their resources must come from many countries, and they need mutual assurance for all contributors that none will renege. The board for SKA, of which I was formerly chair, rapidly concluded that only an intergovernmental organisation could give the necessary stability. It is a very European approach, born of our need to bring together many smaller countries. But it is flexible and resilient.

Of course there are other ways to do this. A European Research Infrastructure Consortium (ERIC) is a lighter weight, faster way to set up an intergovernmental research organisation and is the model that we have used for the European Spallation Source (ESS) in Sweden. The ERIC is part of European Union (EU) legislation and provides many of the benefits in VAT and purchasing rules that an international convention or treaty would, without a convoluted approval process. Once the UK (one of the 13 ESS member nations) withdraws from the EU, it will need legislation to recognise the status of ERICs, just as non-EU Switzerland and Norway have done.

Research facilities can also be run by organisations without any intergovernmental authority: charities, not-for-profit companies or university consortia. This may seem quick and agile, but it is risky. For example, the large US telescope projects TMT and GMT are university-led and have been able to get started, but it seems that US federal involvement will now be essential for their success.

In fact, US participation in international organisations is often an issue because it requires senate approval. The last time this happened for a science project was the ITER fusion experiment, which today is making good progress but had a rocky start. The EU is one of ITER’s seven member entities and its involvement is facilitated via EUROfusion – one of eight European intergovernmental research organisations that are members of EIROforum. Most were established decades ago, and their stable structure has helped them invest in major new facilities such as ESO’s European Extremely Large Telescope.

So international treaty-based science organisations are great for delivering big-science projects, while also promoting understanding between the science communities of different countries. In the aftermath of the Second World War that was really important, and was a founding motivation for CERN. More recently, the SESAME light source in Jordan adopted the CERN model to bring the Middle East’s scientific communities together.

Today the word faces new political challenges, and international treaties don’t do much to address the growing gap between angry, disenfranchised voters and an educated, internationally minded “elite”. We scientists often see nationalism as the problem, but the issue is more one of populism – and by being international we merely seem remote. We are used to speaking about outreach,  but we also need to think seriously about “in-reach” within our own countries and regions, to engage better with groups such as Trump voters and Brexit supporters.

There’s also the risk that too much stability can become rigidity. Organisations like SKA or ESS aim to provide room for negotiation and for substantial amounts of contributions to be made in-kind. They are free of commitments such as pension schemes and, in the case of SKA, membership levels are tied to the size of a country’s astronomy community and not to GDP. Were a future, global project like a Future Circular Collider to be hosted at CERN, a purpose-built intergovernmental agreement would surely be the best way to manage it. CERN is the archetype of intergovernmental organisations in science, and offers great stability in the face of political upheavals such as Brexit. Its challenge today is to think outside the box.

The same applies to all big projects in physics today. Our future prosperity and ability to address major challenges depend on investments in large, cutting-edge research infrastructures. Intergovernmental organisations provide the framework for those investments to flourish.

Rutherford, transmutation and the proton

In his early days, Ernest Rutherford was the right man in the right place at the right time. After obtaining three degrees from the University of New Zealand, and with two years’ original research at the forefront of the electrical technology of the day, in 1895 he won an Exhibition of 1851 Science Scholarship, which took him to the Cavendish Laboratory at the University of Cambridge in the UK. Just after his arrival, the discoveries of X-rays and radioactivity were announced and J J Thomson discovered the electron. Rutherford was an immediate believer in objects smaller than the atom. His life’s work changed to understanding radioactivity and he named the alpha and beta rays.

In 1898 Rutherford took a chair in physics at McGill University in Canada, where he achieved several seminal results. He discovered radon, demonstrated that radio-activity was just the natural transmutation of certain elements, showed that alpha particles could be deviated in electric and magnetic fields (and hence were likely to be helium atoms minus two electrons), dated minerals and determined the age of the Earth, among other achievements.

In 1901, the McGill Physical Society called a meeting titled “The existence of bodies smaller than an atom”. Its aim was to demolish the chemists. Rutherford spoke to the motion and was opposed by a young Oxford chemist, Frederick Soddy, who was at McGill by chance. Soddy’s address “Chemical evidence for the indivisibility of the atom” attacked physicists, especially Thomson and Rutherford, who “… have been known to give expression to opinions on chemistry in general and the atomic theory in particular which call for strong protest.” Rutherford invited Soddy, who specialised in gas analysis, to join him. It was a short but fruitful collaboration in which the pair determined the first few steps in the natural transmutation of the heavy elements.

Manchester days

For some years Rutherford had wished to be more in the centre of research, which was Europe, and in 1907 moved to the University of Manchester. Here he began to follow up on experiments at McGill in which he had noted that a beam of alpha particles became fuzzy if passed through air or a thin slice of mica. They were scattered by an angle of about two degrees, indicating the presence of electric fields of 100 MV/cm, prompting his statement that “the atoms of matter must be the seat of very intense electrical forces”.

At Manchester he inherited an assistant, Hans Geiger, who was soon put to work making accurate measurements of the number of alpha particles scattered by a gold foil over these small angles. Geiger, who trained the senior undergraduates in radioactive techniques, told Rutherford in 1909 that one, Ernest Marsden, was ready for a subject of his own. Everyone knew that beta particles could be scattered off a block of metal, but no one thought that alpha particles would be. So Rutherford told Marsden to examine this. Marsden quickly found that alpha particles are indeed scattered – even if the block of metal was replaced by Geiger’s gold foils. This was entirely unexpected. It was, as Rutherford later declared, as if you fired a 15 inch naval shell at a piece of tissue paper and it came back and hit you.

One day, a couple of years later, Rutherford exclaimed to Geiger that he knew what the atom looked like: a nuclear structure with most of the mass and all of one type of charge in a tiny nucleus only a thousandth the size of an atom. This is the work for which he is most famous today, eight decades after his death (CERN Courier May 2011 p20).

Around 1913, Rutherford asked Marsden to “play marbles” with alphas and light atoms, especially hydrogen. Classical calculations showed that an alpha colliding head-on with a hydrogen nucleus would cause the hydrogen to recoil with a speed 1.6 times, and a range four times, that of the alpha particle that struck it. The recoil of the less-massive, less-charged hydrogen could be detected as lighter flashes on the scintillation screen at much greater range than the alphas could travel. Marsden indeed observed such long-range “H” particles, as he named them, produced in hydrogen gas and in thin films of materials rich in hydrogen, such as paraffin wax. He also noticed that the long-ranged H particles were sometimes produced when alpha particles travelled through air, but he did not know where they came from: water vapour in the gas, absorbed water on the apparatus or even emission from the alpha source, were suggested.

Mid-1914 bought an end to the collaboration. Marsden wrote up his work before accepting a job in New Zealand. Meanwhile, Rutherford had sailed to Canada and the US to give lectures, spending just a month back at Manchester before heading to Australia for the annual meeting of the British Association for the Advancement of Science. Three days before his arrival, war was declared in Europe.

Splitting the atom

Rutherford arrived back in Manchester in January 1915, via a U-boat-laced North Atlantic. It was a changed world, with the young men off fighting in the war. On behalf of the Admiralty, Rutherford turned his mind to one of the most pressing problems of the war: how to detect submarines when submerged. His directional hydrophone (patented by Bragg and Rutherford) was to be fitted to fleet ships. It was not until 1917 when Rutherford could return to his scientific research, specifically alpha-particle scattering from light atoms. By December of that year, he reported to Bohr that “I am also trying to break up the atom by this method. – Regard this as private.”

He studied the long-range hydrogen-particle recoils in several media (hydrogen gas, solid materials with a lot of hydrogen present and gases such as CO2 and oxygen), and was surprised to find that the number of these “recoil” particles increased when air or nitrogen was present. He deduced that the alpha particle had entered the nucleus of the nitrogen atom and a hydrogen nucleus was emitted. This marked the discovery that the hydrogen nucleus – or the proton, to give it the name coined by Rutherford in 1920– is a constituent of larger atomic nuclei.

Marsden was again available to help with the experiments for a few months from January 1919, whilst awaiting transport back to New Zealand after the war, and that year Rutherford accepted the position of director of the Cavendish Laboratory. Having delayed publication of the 1917 results until the war ended, Rutherford produced four papers on the light-atom work in 1919. In the fourth, “An anomalous effect in nitrogen.”, he wrote “we must conclude that the nitrogen atom disintegrated … and that the hydrogen atom which is liberated formed a constituent part of the nitrogen nucleus.” He also stated: “Considering the enormous intensity of the forces brought into play, it is not so much a matter of surprise that the nitrogen atom should suffer disintegration as that the α particle itself escapes disruption into its constituents”.

In 1920 Rutherford first proposed building up atoms from stable alphas and H ions. He also proposed that a particle of mass one but zero charge had to exist (neutron) to account for isotopes. With Wilson’s cloud chamber he had observed branched tracks of alpha particles at the end of their range. A Japanese visitor, Takeo Shimizu, built an automated Wilson cloud chamber capable of being expanded several times per second and built two cameras to photograph the tracks at right angles. Patrick Blackett, after graduating in 1921, took over the project when Shimizu returned to Japan. After modifications, by 1924 he had some 23,000 photographs showing some 400,000 tracks. Eight were forked, confirming Rutherford’s discovery. As Blackett later wrote: “The novel result deduced from these photographs was that the α was itself captured by the nitrogen nucleus with the ejection of a hydrogen atom, so producing a new and then unknown isotope of oxygen, 17O.”

As Blackett’s work confirmed, Rutherford had split the atom, and in doing so had become the world’s first successful alchemist, although this was a term that he did not like very much. Indeed, he also preferred to use the word “disintegration” rather than “transmutation”. When Rutherford and Soddy realised that radioactivity caused an element to naturally change into another, Soddy has written that he yelled “Rutherford, this is transmutation: the thorium is disintegrating and transmuting itself into argon (sic) gas.” Rutherford replied, “For Mike’s sake, Soddy, don’t call it transmutation. They’ll have our heads off as alchemists!”

In 1908 Rutherford had been awarded the Nobel Prize in Chemistry “for his investigations into the disintegration of the elements, and the chemistry of radioactive substances”. There was never a second prize for his detection of individual alpha particles, unearthing the nuclear structure of atoms, or the discovery of the proton. But few would doubt the immense contributions of this giant of physics. 

Centennial conference honours Feynman

2018 marked the 100th anniversary of the birth of Richard Feynman. As one of several events worldwide celebrating this remarkable figure in physics, a memorial conference was held at the Institute of Advanced Studies at Nanyang Technological University in Singapore from 22 to 24 October, co-chaired by Lars Brink, KK Phua and Frank Wilzcek. The format was one-hour talks with 45 minute discussions.

Pierre Ramond began the conference with anecdotes from his time as Feynman’s next-door neighbour at Caltech. He discussed Feynman the MIT undergraduate, his first paper and his work at Princeton as a graduate student. There, Feynman learnt about Dirac’s idea of summing over histories from Herbert Jehle. Jehle asked Feynman about it a few days later. He said that he had understood it and had derived the Schrödinger equation from it. Feynman’s adviser was John Wheeler. Wheeler was toying with the idea of a single electron travelling back and forth in time – were you to look at a slice of time you would observe many electrons and positrons. After his spell at Los Alamos, this led Feynman to the idea of the propagator, which considers antiparticles propagating backwards in time as well as particles propagating forwards. These ideas would soon underpin the quantum description of electromagnetism – QED – for which Feynman shared the 1965 Nobel Prize in Physics with Tomonaga and Schwinger.

Revolutionary diagrams

The propagator was the key to the epony­mous diagrams Feynman then formulated to compute the Lamb shift and other quantities. At the Singapore conference, Lance Dixon exposed how Feynman diagrams revolutionised the calculation of scattering amplitudes. He offered as an example the calculation of the anomalous magnetic moment of the electron, which has now reached five-loop precision and includes 12,672 diagrams. Dixon also discussed the importance of Feynman’s parton picture for understanding deep-inelastic scattering, and the staggeringly complex calculations required to understand data at the LHC.

George Zweig, the most famous of Feynman’s students, and the inventor of “aces” as the fundamental constituents of matter, gave a vivid talk, recounting that it took a long time to convince a sceptical Feynman about them. He described life in the shadows of the great man as a graduate student at Caltech in the 1960s. At that time Feynman wanted to solve quantum gravity, and was giving a course on the subject of gravitation. He asked the students to suppose that Einstein had never lived: how would particle physicists discuss gravity? He quickly explained that there must be a spin-two particle mediating the force; by the second lecture he had computed the precession of the perihelion of Mercury, a juncture that other courses took months to arrive at. Zweig recounted that Feynman’s failure to invent a renormalisable theory of quantum gravity affected him for many years. Though he did not succeed, his insights continue to resound today. As Ramond earlier explained, Feynman’s contribution to a conference in Chapel Hill in 1957, his first public intervention on the subject, is now seen as the starting point for discussions on how to measure gravitational waves.

Cristiane Morais-Smith spoke on Feynman’s path integrals, comparing Hamiltonian and Lagrangian formulations, and showing their importance in perturbative QED. Michael Creutz, the son of one of Feynman’s colleagues at Princeton and Los Alamos, showed how the path integral is also necessary to be able to work on the inherently non-perturbative theory of quantum chromodynamics. Morais-Smith went on to illustrate how Feynman’s path integrals now have a plethora of applications outside particle physics, from graphene to quantum Brownian motion and dissipative quantum tunnelling. Indeed, the conference did not neglect Feynman’s famous interventions outside particle physics. Frank Wilczek recounted Feynman’s famous insight that there is plenty of room at the bottom, telling of his legendary after-dinner talk in 1959 that foreshadowed many developments in nanotechnology. Wilczek concluded that there is plenty of room left in Hilbert space, describing entanglement, quantum cryptography, quantum computation and quantum simulations. Quantum computing is the last subject that Feynman worked hard on. Artur Ekert described the famous conference at MIT in 1981 when Feynman first talked about the subject. His paper from this occasion “Simulating Physics with Computers” was the first paper on quantum computers and set the ground for the present developments.

Biology hangout

Feynman was also interested in biology for a long time. Curtis Callan painted a picture of Feynman “hanging out” in Max Delbruck’s laboratory at Caltech, even taking a sabbatical at the beginning of the 1960s to work there, exploring the molecular workings of heredity. In 1969 he gave the famous Hughes Aerospace lectures, offering a grand overview of biology and chemistry – but this was also the time of the parton model and somehow that interest took over.

Robbert Dijkgraaf spoke about the interplay between art and science in Feynman’s life and thinking. He pointed out how important beauty is, not only in nature, but also in mathematics, for instance whether one uses a geometric or algebraic approach. Another moving moment of this wide-ranging celebration of Feynman’s life and physics was Michelle Feynman’s words about growing up with her father. She showed him both as a family man and also as a scientist, sharing his enthusiasm for so many things in life.

  • Recordings of the presentations are available online.

Serbia becomes CERN Member State

Serbia became the 23rd Member State of CERN, on 24 March, following receipt of formal notification from UNESCO. Ever since the early days of CERN (former Yugoslavia was one of the 12 founding Member States of CERN in 1954, until its departure in 1961), the  Serbian scientific community has made strong contributions to CERN’s projects. This includes at the Synchrocyclotron, Proton Synchrotron and Super Proton Synchrotron facilities. In the 1980s and 1990s, physicists from Serbia worked on the DELPHI experiment at CERN’s LEP collider. In 2001, CERN and Serbia concluded an International Cooperation Agreement, leading to Serbia’s participation in the ATLAS and CMS experiments at the LHC, in the Worldwide LHC Computing Grid, as well as in the ACE and NA61 experiments. Serbia’s main involvement with CERN today is in the ATLAS and CMS experiments, in the ISOLDE facility, and on design studies for future particle colliders – FCC and CLIC – both of which are potentially new flagship projects at CERN.

Serbia was an Associate Member in the pre-stage to membership from March 2012. As a Member State, Serbia will have voting rights in the CERN Council, while the new status will also enhance the recruitment opportunities for Serbian nationals at CERN and for Serbian industry to bid for CERN contracts. “Investing in scientific research is important for the development of our economy and CERN is one of the most important scientific institutions today,” says Ana Brnabić, Prime Minister of Serbia. “I am immensely proud that Serbia has become a fully-fledged CERN Member State. This will bring new possibilities for our scientists and industry to work in cooperation with CERN and fellow CERN Member States.”

Welcome to the Science Gateway

On 8 April, CERN unveiled plans for a major new facility for scientific education and outreach. Aimed at audiences of all ages, the Science Gateway will include exhibition spaces, hands-on scientific experiments for schoolchildren and students, and a large amphitheatre to host science events for experts and non-experts alike. It is intended to satisfy the curiosity of hundreds of thousands visitors every year and is core to CERN’s mission to educate and engage the public in science.

“We will be able to share with everybody the fascination of exploring and learning how matter and the universe work, the advanced technologies we need to develop in order to build our ambitious instruments and their impact on society, and how science can influence our daily life,” says CERN director-general, Fabiola Gianotti. “I am deeply grateful to the donors for their crucial support in the fulfilment of this beautiful project.”

The overall cost of the Science Gateway, estimated at 79 m Swiss Francs, is entirely funded through donations. Almost three quarters of the cost has already been secured, thanks in particular to a contribution of 45 m Swiss Francs from Fiat Chrysler Automobiles. Other donors include a private foundation in Geneva and Loterie Romande, which distributes its profits to public utility projects. CERN is looking for additional donations to cover the full cost of the project.

The Science Gateway will be hosted in iconic buildings with a 7000 m2 footprint, linking CERN’s Meyrin site and the Globe of Science and Innovation. It is being designed by renowned architects Renzo Piano Building Workshop and intends to “celebrate the inventiveness and creativity that characterise the world of research and engineering”. Construction is planned to start in 2020 and be completed in 2022.

SESAME synchrotron goes all-solar

On 26 February, a new solar power plant powering the SESAME light source in Jordan was officially inaugurated. In addition to being the first synchrotron-light facility in the Middle East region, SESAME is now the world’s first major research infrastructure to be fully powered by renewable energy.

Electricity from the solar power plant will be supplied by an on-grid photovoltaic system constructed 30 km away, and its 6.48 MW power capacity is ample to satisfy SESAME’s needs for several years. “As in the case of all accelerators, SESAME is in dire need of energy, and as the number of its users increases so will its electricity bill,” says SESAME director Khaled Toukan. “Given the very high cost of electricity in Jordan, with this solar power plant the centre becomes sustainable.”

Energy efficiency and other environmental factors are coming under growing scrutiny at large research infrastructures worldwide. The necessary funding for the SESAME installation became available in late 2016 when the Government of Jordan agreed to allocate JD 5 million (US$7.05 million) from funds provided by the European Union (EU) to support the deployment of clean energy sources. The power plant, which uses monocrystalline solar panels, was built by the Jordanian company Kawar Energy and power that is transmitted to the grid will be accounted for to the credit of SESAME.

SESAME opened its beamlines to users in July 2018. Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestine and Turkey are currently members of SESAME, with 16 further countries – plus CERN and the EU – listed as observers.

Physicists digest Japan’s ILC statement

The Japanese government has put on hold a decision about hosting the International Linear Collider (ILC), to the disappointment of many hoping for clarity ahead of the update of the European strategy for particle physics. At a meeting in Tokyo on 6–7 March, Japan’s Ministry of Education, Culture, Sports, Science and Technology (MEXT) announced, with input from the Science Council of Japan (SCJ), that it has “not yet reached declaration” for hosting the ILC at this time. A statement from MEXT continued: “The ILC project requires further discussion in formal academic decision-making processes such as the SCJ Master Plan, where it has to be clarified whether the ILC project can gain understanding and support from the domestic academic community… MEXT will continue to discuss the ILC project with other governments while having an interest in the ILC project.”

The keenly awaited announcement was made during the 83rd meeting of the International Committee for Future Accelerators (ICFA) at the University of Tokyo. During a press briefing, ICFA chair Geoffrey Taylor emphasised that colliders are long-term projects. “At the last strategy update in 2013 the ILC was seen as an important development in the field, and we were hoping there would be a definite statement from Japan so that it can be incorporated into the current strategy update,” he said. “We don’t have that positive endorsement, so it will proceed at a slower rate than we hoped. ICFA still supports Japan as hosts of the ILC, and we hope it is built here because Japan has been working hard towards it. If not, we can be sure that there will be somewhere else in the world where the project can be taken up.”

The story of the ILC, an electron–positron collider that would serve as a Higgs factory, goes back more than 15 years. In 2012, physicists in Japan submitted a petition to the Japanese government to host the project. A technical design report was published the following year. In 2017, the original ILC design was revised to reduce its centre-of-mass energy by half, shortening it by around a third and reducing its cost by up to 40%.

Meanwhile, MEXT has been weighing up the ILC project in terms of its scientific significance, technical challenges, cost and other factors. In December 2018, the SCJ submitted a critical report to MEXT highlighting perceived issues with the project, including its cost and international organisation. Asked at the March press briefing why the SCJ should now be expected to change its views on the ILC, KEK director-general Masanori Yamauchi responded: “We can show that we already have solutions for the technical challenges pointed out in the latest SCJ report, and we are going to start making a framework for international cost-sharing.”

Writing in LC NewsLine, Lyn Evans, director of the Linear Collider Collaboration (which coordinates planning and research for the ILC and CERN’s Compact Linear Collider, CLIC), remains upbeat: “We did not get the green light we hoped for. Nevertheless, there was a significant step forward with a strong political statement and, for the first time, a declaration of interest in further discussions by a senior member of the executive. We will continue to push hard.”

Japan’s statement has also been widely interpreted as a polite way for the government to say “no” to the ILC. “The reality is that it is naturally difficult for people outside the machinery of any national administration to understand fully how procedures operate, and this is certainly true of the rest of the world with regard to what is truly happening with ILC in Japan,” says Phil Burrows of the University of Oxford, who is spokesperson for the CLIC accelerator collaboration.

A full spectrum of views was expressed at a meeting of the linear-collider community in Lausanne, Switzerland, on 8–9 April, with around 100 people present. “The global community represented at the Lausanne meeting restated the overwhelming physics case for an electron–positron collider to make precision measurements in the Higgs and top-quark sectors, with superb sensitivity to new physics,” says Burrows. “We are in the remarkable situation that we have not one, but two, mature options for doing this: ILC and CLIC. I hope that the European Strategy Update recommendations will reflect this consensus on the physics case, position Europe to play a leading role, and hence ensure that one of these projects proceeds to realisation.”

bright-rec iop pub iop-science physcis connect