Topics

SESAME synchrotron goes all-solar

7 May 2019

On 26 February, a new solar power plant powering the SESAME light source in Jordan was officially inaugurated. In addition to being the first synchrotron-light facility in the Middle East region, SESAME is now the world’s first major research infrastructure to be fully powered by renewable energy.

Electricity from the solar power plant will be supplied by an on-grid photovoltaic system constructed 30 km away, and its 6.48 MW power capacity is ample to satisfy SESAME’s needs for several years. “As in the case of all accelerators, SESAME is in dire need of energy, and as the number of its users increases so will its electricity bill,” says SESAME director Khaled Toukan. “Given the very high cost of electricity in Jordan, with this solar power plant the centre becomes sustainable.”

Energy efficiency and other environmental factors are coming under growing scrutiny at large research infrastructures worldwide. The necessary funding for the SESAME installation became available in late 2016 when the Government of Jordan agreed to allocate JD 5 million (US$7.05 million) from funds provided by the European Union (EU) to support the deployment of clean energy sources. The power plant, which uses monocrystalline solar panels, was built by the Jordanian company Kawar Energy and power that is transmitted to the grid will be accounted for to the credit of SESAME.

SESAME opened its beamlines to users in July 2018. Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestine and Turkey are currently members of SESAME, with 16 further countries – plus CERN and the EU – listed as observers.


Warning: Trying to access array offset on value of type bool in /opt/app-root/src/wp-content/plugins/advanced-custom-fields-pro/includes/acf-value-functions.php on line 153
Read previous

Physicists digest Japan’s ILC statement


Warning: Trying to access array offset on value of type bool in /opt/app-root/src/wp-content/plugins/advanced-custom-fields-pro/includes/acf-value-functions.php on line 153
bright-rec iop pub iop-science physcis connect