Topics

Tunnel visions

8 July 2016

By M Riordan, L Hoddeson and A W Kolb
University of Chicago Press
Also available at the CERN bookshop

CCboo1_06_16

The Superconducting Super Collider (SSC), a huge accelerator to be built in Texas in the US, was expected by the physicists who supported it to be the place where the Higgs boson would be discovered. Instead, the remnants of the SSC facilities at Waxahachie are now property of the chemical company Magnablend, Inc. What happened in between? What did go wrong? What are the lessons to be learnt?

Tunnel Visions responds to these historical questions in a very precise and exhaustive way. Contrary to my expectations, it is not a doom and gloom narration but a down to earth story of the national pride, good physics and bad economics of one of the biggest collider projects in history.

The book depicts the political panorama during the 10 years (~1983–1993) of life of the SSC project. It started during the Reaganomics, hand in hand with the International Space Station (ISS), and concluded during the first Clinton presidency after the 1990s recession and the end of the Cold War. The ISS survived, possibly because political justifications for space adventure are easier to find, but most probably because from the beginning it was an international project. The book explains the management intricacies of such a large project, the partisan support and disregard, until the final SSC demise in the US congress. For the particle-physics community this is a well-known tale, but the historical details are welcome.

However, the book is more than that, because it also sheds light on the lessons learnt. The final woes of the SSC signed the definitive opening of the US particle-physics community to full international collaboration. For 50 years, without doubt, the US had been the place to go for any particle physicist. Fermilab, SLAC and Brookhaven were, and still are, great stars in the physics firmament. Even if the SSC project had not been cut, those three had to keep working in order to maintain the progress in the field. But that was too much for essentially a zero-sum budget game. The show must go on, so Fermilab got the main injector, SLAC the BaBar factory, and Brookhaven the RHIC collider. Thanks to these upgrades, the three laboratories made important progress in particle physics: top quark discovery; W and Z boson precision measurements; Higgs boson mass hunt narrowing between 113 and 170 GeV; detection of possible discrepancies in the Standard Model associated with b-meson decay; and the discovery of the liquid-like quark–gluon plasma.

Why did the SSC project collapse? The authors explain the real reasons, not related to technical problems but to poor management in the first years and the clash of cultures between the US particle-physics community and the US military-industrial system. But there are also reasons of opportunity. The SSC was several steps beyond its time. To put it into context: during the years of the SSC project, at CERN the conversion of the SPS into a collider took place, along with the whole LEP programme and the beginning of the LHC project. That effort prevented any possible European contribution to the SSC. The last-ditch attempt to internationalize the SSC into a trans-Pacific partnership with Japan was also unsuccessful. The lessons from history, the authors conclude, are that at the beginning of the 1990s the costs of frontier experimental particle physics had grown too much, even for a country like the US. Multilateral international collaboration was the only way out, as the ISS showed.

The Higgs boson discovery was possible at CERN. The book avoids any “hare and tortoise” comparison here, however, since in the dawning of the new century, the US became a CERN observer state with a very important in-kind contribution. In my opinion, this is where the book grows in interest because it explains how the US particle-physics community took part in the LHC programme, becoming decisive. In particular, the US technological effort in developing superconducting magnets was not wasted. The book also talks about the suspense around the Higgs search when the Tevatron was the only one still in the game during the LHC shutdown after the infamous incident in September 2008.

Useful appendices providing notes, a bibliography and even a short explanation of the Standard Model complete the text.

bright-rec iop pub iop-science physcis connect