Particle accelerators have become essential instruments to improve our health, the environment, our safety and our high-tech abilities, as well as unlocking new, fundamental insights into physics, chemistry and biology, and generally enabling scientific breakthroughs that will improve our lives. Accelerating particles to higher energies will always require a large amount of energy. In a society where energy sustainability is critical, keeping energy consumption as low as is reasonably possible is an unavoidable challenge for both research infrastructures (RIs) and industry, which collectively operate more than 40,000 accelerators.
Going green
Based on state-of-the-art technology, the portfolio of current and future accelerator-driven RIs in Europe could develop to consume up to 1% of Germany’s annual electricity demand. With the ambition to maintain the attractiveness and competitiveness of European RIs, and enable Europe’s Green Deal, the Innovate for Sustainable Accelerating Systems (iSAS) project has been approved by Horizon Europe. Its aim is to establish an enhanced collaboration in the field to broaden, expedite and amplify the development and impact of novel energy-saving technologies to accelerate particles.
In general terms, a particle accelerator has a system to create the particles to be accelerated, a system preparing beams with these particles, an accelerating system that effectively accelerates the particle beams, a magnet system to steer the beam, an experimental facility using the particles, and finally a beam dump. In linear accelerating structures, most of the electrical power taken from the grid to operate the accelerator is used by the accelerating system itself.
The core of an accelerating system is a series of cavities that can deliver a high-gradient electric field. For many modern accelerators, these cavities are superconducting and therefore cryogenically cooled to about 2 K. They are powered with radio frequency (RF) power generators to deliver the field at a specific frequency and accordingly to provide energy to the particle beams as they traverse. These superconducting RF (SRF) systems are the enabling technology for frontier accelerators, but are energy-intensive devices where only a fraction of the power extracted from the grid is effectively transmitted to the accelerated particles. In addition, the beam energy is radiated by recirculating beams and ultimately dumped and lost. As an example, the European XFEL’s superconducting RF system uses 5–6 MW for 0.1 MW of average beam power, leading to a power conversion of less than 3%.
The objective of iSAS is to innovate those technologies that have been identified as being a common core of SRF accelerating systems and that have the largest leverage for energy savings with a view to minimising the intrinsic energy consumption in all phases of operation. In the landscape of accelerator-driven RIs, solutions are being developed to reuse the waste heat produced, develop energy-efficient magnets and RF power generators, and operate facilities on opportunistic schedules when energy is available on the grid. The iSAS project has a complementary focus on the energy efficiency of the SRF accelerating technologies themselves. This will contribute to the vital transition to sustain the tremendous 20th-century applications of accelerator technology in an energy-conscious 21st century.
Interconnected technologies
Based on a recently established European R&D roadmap for accelerator technology and based on a collaboration between leading European research institutions and industry, several interconnected technologies will be developed, prototyped and tested, each enabling significant energy savings on their own in accelerating particles. The collection of energy-saving technologies will be developed with a portfolio of forthcoming applications in mind, and to explore energy-saving improvements in accelerator-driven RIs. Considering the developments realised, the new technologies will be coherently integrated into the parametric design of a new accelerating system, a linac SRF cryomodule, optimised to achieve high beam-power in accelerators with an energy consumption that is as low as reasonably possible. This new cryomodule design will enable Europe to develop and build future energy-sustainable accelerators and particle colliders.
iSAS has been approved by Horizon Europe to help develop novel energy-saving technologies to accelerate particles
On 15 and 16 April, the iSAS kick-off meeting was organised at IJCLab (Orsay, France) with around 100 participants. Each of the working groups enthusiastically presented their impactful R&D plans and, in all cases, concrete work has begun. To save energy from RF power systems, novel fast-reacting tuners are being developed to compensate rapidly for detuning of the cavity’s frequency caused by mechanical vibrations, and methods are being invented to integrate them into smart digital control systems. To save energy from the cryogenics, and based on the ongoing Horizon Europe I.FAST project, superconducting cavities with thin films of Nb3Sn are being further developed to operate with high performance at 4.2 K instead of 2 K, thereby reducing the grid-power to operate the cryogenic system. The cryogenic system requires three times less cooling power to maintain a 4.2 K bath at 4.2 K when heat is dissipated in the bath compared to maintaining a 2 K bath at 2 K. Finally, to save energy from the accelerated particle beam itself, the technology of energy recovery linacs (ERLs) is being improved to operate efficiently with high-current beams by developing novel higher-order mode dampers that significantly avoid heat loads in the cavities.
To address the engineering challenges related to the integration of the new energy-saving technologies, an existing ESS cryovessel will be equipped with new cavities and novel dampers, and the resulting linac SRF cryomodule will be tested in operation in the PERLE accelerator at IJCLab (Orsay, France). PERLE is a growing international collaboration to demonstrate the performance of ERLs with high-power beams that would enable applications in future particle colliders. Its first phase is being implemented at IJCLab with the objective to have initial beams in 2028.
The timescale to innovate, prototype and test new accelerator technologies is inherently long, in some cases longer than the typical duration of R&D projects. It is therefore essential to continue to collaborate and enhance the R&D process so that energy-sustainable technologies can be implemented without delay, to avoid hampering the scientific and industrial progress enabled by accelerators. Accordingly, iSAS plans co-development with industrial partners to jointly achieve a technology readiness level that will be sufficient to enter the large-scale production phase of these new technologies.
Empowering industry
While the readiness of several energy-saving technologies will be prepared towards industrialisation with impact on current RIs, iSAS is also a pathfinder for sustainable future SRF particle accelerators and colliders. Through inter- and multidisciplinary research that delivers and combines various technologies, it is the long-term ambition of iSAS to reduce the energy footprint of SRF accelerators in future RIs by half, and even more when the systems are integrated in ERLs. Accordingly, iSAS will help maintain Europe’s leadership for breakthroughs in fundamental sciences and enable high-energy collider technology to go beyond the current frontiers of energy and intensity in an energy-sustainable way. In parallel, the new sustainable technologies will empower and stimulate European industry to conceive a portfolio of new applications and take a leading role in, for example, the semiconductor, particle therapy, security and environmental sectors.