By Claus Grupen and Mark Rodgers
Springer International Publishing
Have you ever thought that batteries capable of providing energy over very long periods could be made with radioisotopes? Did you know that the bacterium deinococcus radiodurans can survive enormous radiation doses and, thanks to its ability to chemically alter highly radioactive waste, it could be potentially employed to clean up radioactively contaminated areas? And do you believe that cockroaches have an extremely high radiation tolerance? Apparently, the latter is a myth. These are a few of the curiosities contained in this “all that you always wanted to know about radioactivity” book from Grupen and Rodgers. It gives a comprehensive overview of the world of radioactivity and radiation, from its history to its risks for humans.
The book begins by laying the groundwork with essential, but quite detailed (similar to a school textbook), information about the structure of matter, how radiation is generated, how it interacts with matter and how it can be measured. In the following chapters, the book explores the substantial benefits of radioactivity through its many applications (not only positive, but also negative and sometimes questionable) and the possible risks associated with its use. The authors deal mainly with ionising radiation; however, in view of the public debate about other kinds of radiation (such as mobile-phone and microwave signals), they include a brief chapter on non-ionising radiation. Also interesting are the final sections, provided as appendices, which summarise the main technologies of radiation detectors as well as the fundamental principles of radiation protection. In the latter, the rationale behind current international rules and regulations, put in place to avoid excessive radiation exposure for radiation workers and the general public, is clearly explained.
This extensive topic is covered using easily understood terms and only elementary mathematics is employed to describe the essentials of complex nuclear-physics phenomena. This makes for pleasant reading intended for the general public interested in radioactivity and radiation, but also for science enthusiasts and inquisitive minds. As a bonus, the book is illustrated with eye-catching cartoons, most of them drawn by one of the authors.
The book emphasises that radiation is everywhere and that almost everything around us is radioactive to some degree: there is natural radioactivity in our homes, in the food that we eat and the air that we breathe. Radiation from the natural environment does not present a hazard; however, radiation levels higher than the naturally occurring background can be harmful to both people and the environment. These artificially increased radiation levels are mainly due to the nuclear industry and have therefore risen substantially since the beginning of the civil-nuclear age in the 1950s. This approach helps readers to put things in perspective and allows them to compare the numbers and specific measurement quantities that are used in the radiation-protection arena. These quantities are the same used by the media, for instance, to address the general public when a radiation incident occurs.
Not only will this book enrich the reader’s knowledge about radioactivity and radiation, it will also provide them with tools to better understand many of the related scientific issues. Such comprehension is crucial for anyone who is willing to develop their own point of view and be active in public debates on the topic.