By Oliver Brüning and Stephen Myers (eds)
World Scientific
Also available at the CERN bookshop
This mighty 840 page book covers an impressive range of subjects divided into no less than 45 chapters. Owing to the expertise and international reputations of the authors of the individual chapters, few if any other books in this field have managed to summarise such a broad topic with such authority. While too numerous to list in the space provided, the full list of authors – a veritable “who’s who” of the accelerator world – can be viewed at worldscientific.com/worldscibooks/10.1142/8635#t=toc.
The book opens with two chapters devoted to a captivating historical review of the Standard Model and a general introduction to accelerators, and closes with two special sections. The first of these is devoted to novel accelerator ideas: plasma accelerators, energy-recovery linacs, fixed-field alternating-gradient accelerators, and muon colliders. The last section describes European synchrotrons used for tumour therapy with carbon ions and covers, in particular, the Heidelberg Ion Therapy Centre designed by GSI and the CERN Proton Ion Medical Machine Study. The last chapter describes the transformation of the CERN LEIR synchrotron into an ion facility for radiobiological studies.
Concerning the main body of the book, 17 chapters look back over the past 100 years, beginning with a concise history of the three first lepton colliders: AdA in Frascati, VEP-1 in Novosibirsk and the Princeton–Stanford electron–electron collider. A leap in time then takes the reader to CERN’s Large Electron–Positron collider (LEP), which is followed by a description of the Stanford Linear Collider. Unfortunately, this latter chapter is too short to do full justice to such an innovative approach to electron–positron collisions.
The next section is devoted to beginnings, starting from the time of the Brookhaven Cosmotron and Berkeley Bevatron. The origin of alternating-gradient synchrotrons is well covered through a description of the Brookhaven AGS and the CERN Proton Synchrotron. The first two hadron colliders at CERN – the Intersecting Storage Rings (ISR) and the Super Proton Synchrotron (SPS) proton–antiproton collider – are then discussed. The ISR’s breakthroughs were numerous, including the discovery of Schottky scans, the demonstration of stochastic cooling and absolute luminosity measurements by van der Meer scans. Even more remarkable was the harvest of the SPS proton–antiproton collider, culminating with the Nobel prize awarded to Carlo Rubbia and Simon van der Meer. The necessary Antiproton Accumulator and Collector are discussed in a separate chapter, which ends with an amusing recollection: “December 1982 saw the collider arriving at an integrated luminosity of 28 inverse nanobarns and Rubbia offering a ‘champagne-only’ party with 28 champagne bottles!” Antiproton production methods are covered in detail, including a description of the manoeuvres needed to manipulate antiproton bunches and of the production of cold antihydrogen atoms. This subject is continued in a later chapter dedicated to CERN’s new ELENA antiproton facility.
The Fermilab proton–antiproton collider started later than the SPS, but eventually led to the discovery of the top quark by the CDF and D0 collaborations. The Fermilab antiproton recycler and main ring are described, followed by a chapter dedicated to the Tevatron, which was the first superconducting collider. The first author remarks that, over the years, some 1016 antiprotons were accumulated at Fermilab, corresponding to about 17 nanograms and more than 90% of the world’s total man-made quantity of nuclear antimatter. This section of the book concludes with a description of the lepton–proton collider HERA at DESY, the GSI heavy-ion facility, and the rare-isotope facility REX at ISOLDE. Space is also given to the accelerator that was never built, the US Superconducting Super Collider (SSC), of which “the hopeful birth and painful death” is recounted.
The following 25 chapters are devoted to accelerators for the 21st century, with the section on “Accelerators for high-energy physics” centred on the Large Hadron Collider (LHC). In the main article, magisterially written, it is recalled that the 27 km length of the LEP tunnel was chosen having already in mind the installation of a proton–proton collider, and the first LHC workshop was organised as early as 1984. The following chapters are dedicated to ion–ion collisions at the LHC and to the upgrades of the main ring and the injector. The high-energy version of the LHC and the design of a future 100 km-circumference collider (with both electron–positron and proton–proton collision modes) are also covered, as well as the proposed TeV electron–proton collider LHeC. The overall picture is unique, complete and well balanced.
Other chapters discuss frontier accelerators: super B-factories, the BNL Relativistic Heavy Ion Collider (RHIC) and its electron–ion extension, linear electron–positron colliders, electron–positron circular colliders for Higgs studies and the European Spallation Source. Special accelerators for nuclear physics, such as the High Intensity and Energy ISOLDE at CERN and the FAIR project at GSI, are also discussed. Unfortunately, the book does not deal with synchrotron light sources, free electron lasers and high- power proton drivers. However, the latter are discussed in connection with neutrino beams by covering the CERN Neutrinos to Gran Sasso project and neutrino factories.
The book is aimed at engineers and physicists who are already familiar with particle accelerators and may appreciate the technical choices and stories behind existing and future facilities. Many of its chapters could also be formative for young people thinking of joining one of the described projects. I am convinced that these readers will receive the book very positively.