Comsol -leaderboard other pages

Topics

International Masterclasses in the LHC era

High-school students

The International Masterclasses (IMCs) began in 2005 as an initiative of what was then the European Particle Physics Outreach Group (EPPOG). Since then, EPPOG has become the International Particle Physics Outreach Group (IPPOG), and the masterclasses have grown steadily beyond a group of IPPOG member countries. This year, the 10th edition of the IMCs included 200 institutions in 41 countries worldwide. Several of the initiatives have attracted new partners, including some from the Middle East and Latin America, enabling IMCs to be held in diverse locations – from Israel and Palestine to South Africa, and from New Zealand to Ecuador – in addition to the many sites in Europe and North America. Now, well into the LHC era, the masterclasses use fresh data from the world’s biggest particle accelerator, as collected by the four big experiments.

All of the LHC collaborations involved acknowledge the potential – and the success – of educational programmes that bring important discoveries at the LHC to high-school students by providing large samples of the most recent data. For example, 10% of the 8-TeV ATLAS “discovery” data are available for students to search for a Higgs boson; CMS approved 13 Higgs candidates in the mass region of interest, which are mixed with a more abundant sample of W and Z events, for “treasure hunt” activities; ALICE data allow students to study the relative production of strange particles, which could be a tell-tale signal of quark–gluon plasma production; LHCb teaches students how to measure the lifetime of the D meson; and particles containing b and c quarks are studied extensively to shed light on the mystery of antimatter in the universe.

Students quickly master real event-display programmes

Students quickly master real event-display programmes – such as iSpy-online, Hypatia and Minerva – software tools and analysis methods. First, they practice particle identification by exploiting the characteristic signals left by particles in various detector elements, where electrons, muons, photons and jets are recognizable. They go on to select and categorize events, and then proceed with measurements. Typically, two students analyse 50–100 events, before joining peers to combine and discuss data with the tutors at their local IMC institution. Then they join students at several other locations to combine and discuss all of the data from that day in a video conference from CERN or Fermilab (see table 1).

The IMCs make five measurements available. Typically, a local institution selects one that their physicists have deep knowledge of, guaranteeing that experts are available to talk to the students about what they know best.

The ATLAS Z-path measurement relies on invariant mass for particle identification. It is first applied to measure the mass and width of the Z boson, and of the J/ψ and ϒ mesons. These parameters are all inferred from the decay products – pairs of e+e or μ+μ leptons. When a hypothetical new heavy gauge boson, Z´, is mixed with the data, the simulated signal shows up in the dilepton mass distribution. The students apply the same technique to di-photons and pairs of dileptons to search for decays of a Higgs boson to γγ and ZZ*, leading to a four-lepton final state.

Map of institutions

The ATLAS W-path deals with the structure of the proton and the search for a Higgs boson. Students look for a W-boson decaying into a charged lepton and a neutrino (missing energy), and build the charge ratio NW+/NW–. The simple view of a proton structure of uud quarks leads to a naive approximation of NW+/NW– = 2. The presence of sea quarks and gluons complicates the picture, bringing the ratio down to around 1.5, compatible with the measurements by ATLAS and CMS. The next challenge is to study events containing W+W pairs, which are characterized by two oppositely charged leptons and neutrinos. Decays of a Higgs boson to W+W would enhance the distribution of the azimuthal angle between the charged leptons at low values.

The CMS measurement is called “WZH” for the W, Z, and Higgs bosons. Based on the signatures of leptonic decays, students determine whether each event is a W candidate, a Z candidate, a Higgs candidate, or background. For W bosons, they use the curvature of the single measurable lepton track to decide if it is a W+ or W and so derive the charge ratio of W-boson production. They can also characterize events as having a muon or an electron to measure the electron-to-muon ratio. For Z and Higgs candidates, students put the invariant masses of lepton and dilepton pairs, respectively, in a mass plot. They discover the Z and Higgs peaks, including a few other resonances they might not have expected.

ALICE’s ROOT-based event-display software enables students to reconstruct strange particles (Ks, Λ, Λ) decaying to ππ and pπ. As a second step, they analyse large event samples from lead collisions in different regions of centrality, and normalize to the mean number of nucleons participating in the collision for each centrality region. Data from proton collisions and from lead-ion collisions lead to a measurement of the relative production of strangeness, which the students compare with theoretical predictions.

All of these educational packages are tuned and expanded to follow the LHC’s “heartbeats”

The LHCb measurement allows students to extract the lifetime of the D0 meson after having studied and fitted an invariant-mass distribution of identified kaons and pions. The next step is to compare and discuss properties of D0 and D0 decays.

All of these educational packages are tuned and expanded to follow the LHC’s “heartbeats”. The intention is for the IMCs to bring measurements for new discoveries in the coming years.

A model for science education

The IMCs have led to other masterclass initiatives. National programmes bring masterclasses to students in areas far from the research institutes that host the international programme. In several countries, programmes for teachers’ professional development include masterclass elements, as does CERN’s national teacher programme. Masterclasses also reach locations other than schools, such as science centres or museums, and other fields of physics, including astroparticle and nuclear physics, have embarked on national and international masterclass programmes.

The largest national programme is the German four-level “Netzwerk Teilchenwelt”, which has been active since 2010. In its basic level, more than 100 young facilitators, mostly PhD and Masters’ students from 24 participating universities and research centres, take CERN’s data to schools. Throughout the year, on at least every other school day, a local masterclass takes place somewhere in Germany. Annually, about 4000 students are invited to further qualification and specialization levels in the network, which can lead to their own research theses. Another example is the Greek “mini-masterclasses” at high-schools, which are usually combined with virtual LHC visits where students link with a physicist at the ATLAS or CMS experimental areas.

Elements of particle-physics masterclasses for teachers’ professional development have become standard in most of the national teacher programmes at CERN and in countries such as Austria, France, Germany, Greece, Italy and the US. Masterclasses for the general public have taken place in science centres in Norway and Germany.

different measurements in 2014

Other physics fields are also using the masterclasses as a model for physics education and science communication. For example, in the UK, nuclear-physics masterclasses cover nuclear fusion and stellar nucleosynthesis. Astroparticle physics is also joining the masterclass scene. In Germany, the Netzwerk Teilchenwelt hosts masterclasses that use data from the Pierre Auger Observatory to reconstruct cosmic showers or energy spectra, or data on cosmic muons that the students take themselves using Cherenkov or scintillation detectors. Since 2012, students at the Notre Dame Exoplanet Masterclass in the US have used data and tools from the Agent Exoplanet citizen science project run by the Las Cumbres Observatory Global Telescope Network to measure characteristics of exoplanets from their effects on the light curves of stars that they orbit during a transit. New international masterclasses on the search for very high-energy cosmic neutrinos at the IceCube Neutrino Observatory at the South Pole will connect three countries in May 2014, with more countries joining in 2015.

Behind the scenes

An international steering group manages the IMCs in close co-operation with IPPOG. Co-ordination is provided through the Technische Universität (TU) Dresden and the QuarkNet project in the US, and funding is provided by institutions in Europe (CERN, the European Physical Society and TU Dresden) and the US (the University of Notre Dame and Fermilab). While the co-ordination based at TU Dresden is responsible for the whole of Europe, Africa and the Middle East, co-ordination through QuarkNet covers North and South America, Australia and Oceania and the Far East. Co-ordinators are in close contact with all of the participating institutions. They issue circulars, create the schedule, maintain websites, provide orientation and integrate new institutions into the IMCs. As QuarkNet is a US programme for teachers’ professional development, the co-ordination also includes visiting and preparing educators at schools and at IMC institutions.

One of the highlights of the IMCs is the final video conference, where students present and combine their results

One of the highlights of the IMCs is the final video conference, where students present and combine their results with other student groups and moderators at CERN or Fermilab. Co-ordinators take special care to create the schedule so that every video conference is an international collaboration that lets the students explore part of the daily life of a particle physicist, doing science across borders. Young physicists at CERN and Fermilab moderate the sessions and represent the face of particle physics to the students. The co-ordinators maintain excellent collaboration with the moderators, for example arranging training and monitoring video conferences.

IPPOG – an umbrella for more

The IMCs in the LHC era are a major activity of IPPOG, a network of scientists, educators and communication specialists working worldwide in informal science education and outreach for particle physics. Through IPPOG, the masterclasses profit from scientists taking an active role, conveying the fascination of fundamental research and thereby reaching young people. IPPOG offers a reliable and regular discussion forum and information exchange, enabling worldwide participation. In addition to organizing the IMCs and hosting a collection of recommended tools and materials for education and outreach, IPPOG facilitates participation in a variety of activities such as CERN’s new Beam Line for Schools project and the celebrations for the organization’s 60th anniversary.

IPPOG is poised to support recommendations outlined in the 2013 update to the European Strategy for Particle Physics and the US Community Summer Study 2013, to engage a greater proportion of the particle-physics community in communication, education and outreach activities. This engagement should be supported, facilitated, widened and secured by measures that include training, encouragement and recognition. Many individuals, groups and institutions in the particle-physics community reach out to members of the public, teachers and school students through a variety of activities. IPPOG can help to lower the barriers to engagement in such activities and make a coherent case for particle physics.

The organizers of the IMCs expect and welcome new partners. For more about the programme, visit http://physicsmasterclasses.org/. For more about IPPOG, see http://ippog.web.cern.ch. For the Netzwerk Teilchenwelt, visit www.teilchenwelt.de; for the Mini-Masterclasses, see http://discoverthecosmos.eu/news/87; and for QuarkNet, see http://quarknet.fnal.gov/.

The LHC and beyond

The International Masterclasses make use of real events from LHC experiments through a variety of activities:

• ATLAS Z-path – http://atlas.physicsmasterclasses.org/en/zpath.htm
• ATLAS W-path – http://atlas.physicsmasterclasses.org/en/wpath.htm
• CMS measurement – http://cms.physicsmasterclasses.org/pages/cmswz.html
• ALICE ROOT-based – http://aliceinfo.cern.ch/public/MasterCL/MasterClassWebpage.html
• ALICE – www-alice.gsi.de/masterclass/
• LHCb measurement – http://lhcb-public.web.cern.ch/lhcb-public/en/LHCb-outreach/masterclasses/en/
• iSpy-online – www.i2u2.org/elab/cms/event-display/
• Hypatia – http://hypatia.phys.uoa.gr/
• Minerva – http://atlas-minerva.web.cern.ch/atlas-minerva/

At the same time, activities are extending beyond particle physics:
• Nuclear physics – www.liverpoolphysicsoutreach.co.uk/#/nuclear-physics-masterclass/4567674188
• Exoplanet Masterclass – http://leptoquark.hep.nd.edu/~kcecire/exo2013/
• IceCube – http://icecube.wisc.edu/masterclass/participate

Latin America comes to CERN

International collaboration in physics was born in Europe, after the Second World War, to explore subnuclear particle physics. An entirely new world, unveiled by the interactions of cosmic rays in the Earth’s atmosphere, could be studied only with particle accelerators so big that no country in Europe could afford to build them. The vision of distinguished European scientists and statespersons led to CERN’s creation in 1954.

CCvie2_05_14

In the 1980s a mutation took place as CERN entered the era of the Large Electron Positron (LEP) collider. The experiments needed large human and financial resources, which CERN could not provide. Universities and their associated countries formed large-scale collaborations, with extensive funds for the construction and operation of detectors and to support the travel of professors and students to collect and translate into new physics the data produced at LEP. This phenomenon has since repeated itself, on a larger scale, with the LHC. Today CERN has more than 10,000 “users” from around the world.

At the end of 2003, Juan Antonio Rubio, Verónica Riquer and I realized that a major obstacle for Latin American scientists to take part in experiments at the LHC was the lack of regular funds for their, and their students’, mobility. The outcome was the High-Energy physics Latin-American European Network – HELEN – financed by ALFA, a programme created by the European Union (EU) to facilitate the scientific interchange between Europe and Latin America.

High-energy physics already had a considerable tradition in Latin America. In the early 1930s, Manuel Sandoval Vallarta in Mexico discovered the “east-west effect”, which showed that cosmic rays are charged particles. (Bruno Rossi obtained a similar result with an expedition in Africa.) Cesar Lattes and Beppo Occhialini created a vital school in experimental particle physics in Brazil, which produced important physicists such as Roberto Salmeron, Alberto Santoro and many others. On the theory side, Marcos Moshinski made significant contributions to group theory in nuclear physics, and the beginning of the Standard Model witnessed important results by José Leite Lopez, Juan José Gianbiagi, Carlos Guido Bollini, Miguel Virasoro and many others. Richard Feynman’s lectures in Rio had a profound influence, and the efforts of Leon Lederman definitely oriented the experimental school in South America towards Fermilab.

The aim with HELEN was to change the tendency to work with the US, which had been only marginally affected by the participation of Brazilian groups in LEP. Among the objectives for mobility, we listed training of the younger generations, through participation in advanced experiments, and access to technological benefits in accelerator, detector and information technology. The result was a network of 22  universities from eight Latin American countries, 16 universities from six European countries, CERN and the Pierre Auger Observatory in Argentina.

Starting in July 2005 and ending in April 2009, HELEN enabled mobility totalling 1596 man months, mainly from Latin America to Europe, but also from Europe to Latin America, and within Latin America – where the grants helped to foster collaboration. The total cost was €3.0 million, with €2.7 million coming through EU support.

The exciting adventure of creating a Latin-American community in the scientific heart of Europe started in January 2006, with the arrival at CERN of the first HELEN grant-holders from Latin America. Several events were organized by HELEN in Argentina and in Mexico to transfer CERN technologies in accelerator physics and computing. For example, members of the CMS collaboration travelled to Brazil to help set up an LHC Computing Grid Tier-2 centre for CMS at the Rio de Janeiro State University and in Sao Paulo.

Prompted by the success of HELEN, in 2009 we proposed a new project that started in February 2011 – the European Particle physics Latin-American NETwork (EPLANET), funded by the EU in the Marie Curie Actions of the 7th Framework Programme. Supported by EPLANET, professors and graduate students can participate in the exciting research that began at the LHC in 2010, when the first physics run started.

The objective of EPLANET is to train scientific personnel in the collaborating institutions through participation in world-class experiments performed at CERN and the Pierre Auger Observatory. The rules of the Framework Programme allowed the admission of only four countries from Latin America – namely Argentina, Brazil, Chile and Mexico. CERN has provided additional funds to continue the collaboration with Colombia, Peru and Venezuela that started with HELEN.

All in all, HELEN and EPLANET are perceived in the high-energy physics community as unprecedented and successful efforts to integrate the particle-physics communities of Europe and Latin America. HELEN made possible the full participation of Latin American groups in the LHC experiments and as a consequence, Latin American physicists contributed to the discovery of a Higgs boson by the ATLAS and CMS experiments. Now, EPLANET continues to promote sustainable collaboration between Europe and Latin America in high-energy physics and its associated technologies. I am confident that the two initiatives will have a major impact on multilateral Latin America–EU co-operation.

Relativistic Hydrodynamics

By Luciano Rezzolla and Olindo Zanotti
Oxford University Press
Hardback: £55

Also available as an e-book

814CjoRuYML

This book provides an up-to-date, lively and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. It presents a well-organized description of the subject, from the basic principles of statistical kinetic theory, through the technical aspects of numerical methods devised for the solution of the equations, to applications in modern physics and astrophysics. There are numerous figures and diagrams, as well as a variety of exercises, which support the material in the book.

100 Years of Subatomic Physics

By Ernest M Henley and Stephen D Ellis (eds.)
World Scientific
Hardback: £58
Paperback: £32
E-book: £24
Also available at the CERN bookshop

41IDLnrCbvL._SX346_BO1,204,203,200_

By 1911, radioactivity had been discovered for more than a decade but its origin remained a mystery. Ernest Rutherford’s discovery of the nucleus and the subsequent discovery of the neutron by James Chadwick started the field of subatomic physics – a quest to understand the fundamental constituents of matter. This book reviews the important achievements in subatomic physics in the past century. The chapters are divided into two parts – nuclear physics and particle physics – with contributions by many eminent researchers, from Steven Weinberg’s overview of the subject to John Schwarz on string theory and M-theory.

Selected Papers II: With Commentaries

By Chen Ning Yang
World Scientific
Hardback: £65
Paperback: £32
E-book: £24

4135fuWrl+L

Since receiving his PhD from the University of Chicago in 1948, Chen Ning Yang has had great impact in both abstract theory and phenomenological analysis in modern physics. In 1983 he published Selected Papers (1945–1980), With Commentary. Freeman Dyson considered it to be one of his favourite books. This sequel to that previous volume is a collection of Yang’s personally selected papers (1971–2012), supplemented by his insightful commentaries. Its contents reflect his changing interests after he reached the age of 30. It also includes commentaries that he wrote in 2011 when he was 89. The papers and commentaries in this collection comprise a remarkable personal and professional chronicle, shedding light on both the intellectual development of a great physicist and on the nature of scientific inquiry.

Space–Time Symmetry and Quantum Yang–Mills Gravity: How Space–Time Translational Gauge Symmetry Enables the Unification of Gravity with Other Forces

By Jong-Ping Hsu and Leonardo Hsu
World Scientific
Hardback: £65

E-book: £49

61GX2lTKkGL

Yang–Mills gravity is a new theory, consistent with experiments, that brings gravity back to the arena of gauge field theory and quantum mechanics in flat space–time. It provides solutions to long-standing difficulties in physics, such as the incompatibility between Einstein’s principle of general co-ordinate invariance and modern schemes for a quantum mechanical description of nature. The book aims to provide a treatment of quantum Yang–Mills gravity with an emphasis on the ideas and evidence that the gravitational field is the manifestation of space–time translational symmetry in flat space-time, and that there exists a fundamental space–time symmetry framework that can encompass all of physics, including gravity, for all inertial and non-inertial frames of reference.

A Course in Field Theory

By Pierre Van Baal
CRC Press
Also available as an e-book

CCboo2_04_14

Quantum field theory is a mature discipline. One of the key questions today is how to teach and organize this large body of information, which spans several decades and encompasses diverse physical applications that range from condensed-matter to nuclear and high-energy physics. Since the turn of the millennium, interested readers have witnessed progressive growth in publications on the subject. More often than not, the authors choose to edit their own notes extensively, with the purpose of presenting a whole series of lectures as a treatise.

Indeed, it is common to see books on quantum field theory of around 500 pages. Most of these publications give slightly different perspectives on the same subjects, but their treatments are often synoptic because they all refer to some of the classic presentations on field theory of the 20th century. The proliferation of books is at odds with the current practice where students are obliged to summarize a large number of different subjects through shorter texts, or even by systematic searches through various databases.

In this respect, A Course in Field Theory is a pleasant novelty that manages the impossible: a full course in field theory from a derivation of the Dirac equation to the standard electroweak theory in less than 200 pages. Moreover, the final chapter consists of a careful selection of assorted problems, which are original and either anticipate or detail some of the topics discussed in the bulk of the chapters.

Instead of building a treatise out of a collection of lecture notes, the author took the complementary approach and constructed a course out of a number of well-known and classic treatises. The result is fresh and useful. The essential parts of the 22 short chapters – each covering approximately one or two blackboard lectures – are cleverly set out: the more thorough calculations are simply quoted by spelling out, in great detail, the chapters and sections of the various classic books on field theory, where students can appreciate the real source of the various treatments that have propagated through the current scientific literature. Despite the book’s conciseness the mathematical approach is rigorous, and readers are never spoon-fed but encouraged to focus on the few essential themes of each lecture. The purpose is to induce specific reflections on many important applications that are often mentioned but not pedantically scrutinized. The ability to prioritize the various topics is wisely married with constant stimulus for the reader’s curiosity.

This book will be useful not only for masters-level students but will, I hope, be well received by teachers and practitioners in the field. At a time when PowerPoint dictates the rules of scientific communication between students and teachers (and vice versa), this course – including some minor typos – smells pleasantly of chalk and blackboard.

Hans Christian Ørsted: Reading Nature’s Mind

By Dan Ch Christensen
Oxford University Press
Hardback: £39.99 $69.95
Also available as an e-book, and at the CERN bookshop

51N97-zGgfL

Hans Christian Ørsted (1777–1851) is of great importance as a scientist and philosopher, far beyond the borders of Denmark and his own time. His discovery of electromagnetism revolutionized the course of physical research, and in time prompted technological inventions that changed the life of modern societies. He was also remarkable in unifying two cultures – the sciences and the arts. This first comprehensive and contextual biography of Ørsted offers cultural and sociological insights into the European network of scientists in the 19th century, when divergent national paradigms prevailed. It also illuminates Danish cultural and intellectual circles in the so-called Golden Age.

Fun in Fusion Research

By John Sheffield
Elsevier
Hardback: €50.95
E-book: €50.95

CCboo1_04_14

One thing the reader learns from this book is that the path towards achieving controlled nuclear fusion is not smooth or free from the vagaries of funding agencies. You also realize how incredibly difficult the problem is.

The fusion process is well understood and a number of experiments around the world have verified the principles. However, it still has to be demonstrated that a gain in energy can be achieved. There are two main approaches to accomplishing this. One is the magnetic confinement of deuterium–tritium plasma and the other is laser compression of a cryogenic layer of deuterium and tritium in a pellet. Sheffield takes the reader on a personal journey in the quest for a fusion device capable of producing net energy gain, recounting some amusing moments from his career as he oscillated between Europe and the US. Interspersed between the many stories, there is an historical account of modern fusion activity, covering both science and politics.

His research career in fusion started when he joined the United Kingdom Atomic Energy Authority laboratory at Harwell, close to Oxford, in 1958. There he began working on shock-wave experiments to reach the temperatures necessary for fusion. In these early shock experiments, as in all fusion experiments, high-voltage systems were the norm – and where large amounts of electrical energy are stored, sparks and explosions can occur. Sheffield recounts several stories of such explosions, sparks and fires. He was always amazed that no one was seriously injured – this was not a result of stringent safety precautions, but sheer luck. Today, safety officers reading these stories of capacitors accidentally discharging megajoules of energy would swiftly close down the site. Sheffield’s early experiments on shock waves were indeed shut down, but because they were a dead end in terms of fusion. Nevertheless, by the end they had amassed a wealth of data on collisionless shock waves. This science of collisionless shocks is now an active research area in space physics and astrophysics.

The imagination of fusion scientists shows no bounds when it comes to thinking of new magnetic-field topologies to contain plasma with a temperature of 100 million degrees. However, the closing down of machines is a major problem in fusion research, which has resulted in there being today only a few major facilities, such as the Joint European Torus in the UK, the ITER international tokamak device being built in France, and the National Ignition Facility in the US, where a laser-fusion machine is operating and producing interesting results. Sheffield describes the “dinosaur chart” he created when accused by a congressional staffer that fusion scientists never wanted to close any line of research or a machine. The chart shows how projects are closed or cancelled. A parallel in accelerator physics is the Superconducting Super Collider (SSC) in the US, but most of the machines described in the dinosaur chart were being used for science, unlike the SSC, which was never completed.

The book is, in a sense, a short history of the quest for fusion, mainly through magnetic confinement, and the various stories paint an interesting picture of some of the characters in the field. A number of them are well known in fusion circles, but little known outside, so this will interest readers who are already working in fusion or plasma physics, where the stories and characters will be familiar. A few exceptions include Edward Teller, Andrei Sakharov, Lev Artsimovich and Marshall Rosenbluth.

There is some useful information about the various fusion processes and while the book is not comprehensive, it gives the main ideas – even if briefly – behind magnetic and inertial fusion. It conveys a strong message that fusion is well worth the effort, even though it is likely to be decades before energy is delivered to the Grid. It will appeal to those who have an interest in fusion and in the psychology behind scientific activity.

CERN and ESA sign co-operation agreement

CCnew2_04_14

On 28 March, CERN and the European Space Agency (ESA) signed a framework agreement for future co-operation on research and technology in areas of mutual interest. Future areas might include the development and characterization of innovative materials for applications in extreme conditions and for cutting-edge scientific performances, the development of new micro-technologies to be applied in miniaturized distributed sensor systems, and the development and testing of high-performance detectors for high-energy physics experiments and space payloads.

This year is CERN’s 60th anniversary and ESA’s 50th, making the signature an opportunity to celebrate the memory of a scientist who was a founding father of both organizations: the Italian, Edoardo Amaldi. During the ceremony, ESA’s director-general Jean-Jacques Dordain presented CERN’s director-general, Rolf Heuer, with copies of letters by Amaldi in which he lays out his concern for peace and the role science should play in fostering it. These letters were flown aboard ESA’s Automated Transfer Vehicle 3 – a spacecraft named in Amaldi’s honour.

bright-rec iop pub iop-science physcis connect