Comsol -leaderboard other pages

Topics

CERN: a forward look

On 1 July, the cycle of events celebrating CERN’s 60th anniversary opened in Paris with an event commemorating the anniversary of the CERN Convention, which was signed at the UNESCO headquarters in 1953 by representatives of the founding members. These 12 signatures are indeed worth commemorating. For more than half a century, the convention has stood the test of time as a masterpiece of simple and minimalistic legal language that focuses wisely on the essential cornerstones of CERN’s institutional basis and governance. At the same time, it provides for the leeway that is necessary to adapt the organization to a changing political environment, and to new scientific and technological challenges. The convention is a testimony to the wisdom and foresight of CERN’s founding fathers, on a par with their vision of rebuilding peace in Europe by establishing a unique focal point that would foster scientific collaboration on an unprecedented scale, between nations that had fought a war against each other only a few years earlier. On the basis of this convention, CERN has served as a model for other successful European science organizations, and most recently for the SESAME synchrotron light source in the Middle East.

Some of the most intriguing aspects of the CERN Convention are in the provisions for membership in the organization. Whereas Article II stipulates that “the Organization shall provide for collaboration among European States in nuclear research of a pure scientific and fundamental character…”, nowhere is it stated explicitly that membership in CERN is restricted to European states. This ambiguity is by no means fortuitous. It reflects the fact that already in the early 1950s, a possible enlargement of membership beyond Europe was a hotly debated issue on which the provisional council could not reach agreement. It agreed, however, on a carefully crafted compromise that left a door open to shaping the membership policy of CERN at a later stage, and to adapting it to an evolving scientific and political landscape.

Indeed, Council has debated a widening of membership on several occasions, and confirmed repeatedly a restrictive interpretation of Article II, whereby membership remained reserved for European countries. Only in 2010 did Council approve the most radical shift of paradigm of CERN’s membership policy to date, embedded in a policy of “geographical enlargement” and opening full membership to non-European states, irrespective of their geographical location. At the same time, Council introduced the new instrument of associate membership to facilitate the accession of new members, including emerging countries outside Europe, which might not command sufficient resources to sustain full membership in the foreseeable future.

CERN’s new membership policy follows a twofold rationale. It reflects the globalization of particle physics, which in turn has become a prominent paradigm for the globalization of science at large, and it prepares CERN for its long-term future. Since 2004, the community of CERN “users” has grown from just above 6000 to almost 11,000 scientists and engineers. This dramatic growth has been driven by non-member states more than by the member states. Whereas the numbers are dominated by North America, in recent years the most important growth rates have been observed in communities from Asia and Latin America, where new players emerge on the field of international science. Particle physics has a strong tradition of defying political and geographical boundaries. CERN’s new membership policy underpins, in part, the global migration of the particle-physics community, which reflects the scientific attractiveness and success of the LHC.

More important, geographical enlargement is a first step in preparing CERN’s membership and governance for the post-LHC future. Whereas the LHC experiments today are truly global operations, the LHC machine was built as a predominantly European project, with a technically and politically important contribution of about 10% from outside Europe, mostly provided in kind. This model is not likely to work for a large next-generation facility in Europe. With the CLIC and FCC studies, CERN is exploring two different, challenging avenues to prepare its future, and the future of the field, after the LHC. No cost estimate exists yet for the various options, but it seems inconceivable that any of them could be approved and built within the same membership, governance and funding structures that worked 20 years ago – successfully, but under great labour pains – for the LHC.

With 10 applications for membership or associate membership received from countries of varying size, and from inside and outside Europe (Brazil, Croatia, Cyprus, Israel, Pakistan, Russia, Serbia, Slovenia, Turkey and Ukraine), during the past four years, the enlargement process has made a promising start. Some of the accession procedures have been completed (Israel has become CERN’s 21st member state), Serbia is an associate member in the pre-stage to membership, and other accession procedures are expected to conclude in the near future. (Romania, which applied for membership before the introduction of the new policy in 2010, has been integrated a posteriori in the same accession procedure as the other, more recent applicant states.) Other countries that would seem natural candidates acknowledge the promise and potential of a continued scientific and technological partnership, but have remained absent so far, or are hesitant on political or financial grounds.

More work, stamina, and patience will be needed to enlarge the membership of CERN to a size that is commensurate with its future ambitions in quantity and quality. Moreover, not all states that are obvious candidates for a closer scientific and technical partnership might share today the values of a governance that is excellence driven and consensus oriented, and that has prevailed most of the time in CERN’s 60-year history. In the long term, broadening the institutional base without sacrificing the traditional values of European co-operation that have been a key ingredient in CERN’s past successes is likely to emerge as the true challenge of the enlargement process.

Accelerator Physics at the Tevatron Collider

By Valery Lebedev and Vladimir Shiltsev (eds)
Springer
Hardback: £99 €116.04 $149
E-book: £79 €91.62 $119

CCboo1_09_14

This fascinating book, compiled and edited by two of the leaders of Tevatron’s Run II, describes the achievements and lessons from Fermilab’s famous machine, which shut down for the last time at the end of September 2011. The authors and editors take us on a mesmerizing tour through the components and history of this remarkable accelerator, and provide a lively account of how, across the years, numerous obstacles were overcome, and how novel technologies contributed to the astonishing success of “one of the most complex research instruments ever to reach the operation stage”. Not only was the Tevatron the highest-energy particle collider for about a quarter of a century, it was also a pioneering accelerator in almost every regard.

In the first of nine chapters, Steve Holmes, former Fermilab accelerator director, John Peoples, former Fermilab director, together with Ronald Moore and Vladimir Shiltsev, recall the history of Fermilab and the “Energy Saver/Doubler”, which was later to become known as the Tevatron. Across almost three decades, the peak luminosity of this collider was increased by four orders of magnitude. The second chapter, in which Alexander Valishev joins the two editors as author, surveys the Tevatron’s linear and nonlinear beam-optics control. I particularly enjoyed the review of the intricate and spectacular nonlinear dynamics experiments performed in the late 1980s and early 1990s, which had been conceived to unveil the origin of dynamic aperture (e.g., the famous “E778 experiment”) and the effect of tune modulation.

The third chapter, by Jerry Annala and co-workers, brings us to the heart of the accelerator. As the first superconducting hadron storage ring, the Tevatron designers and operators had many issues to tackle. These included the effects of large intrinsic nonlinear field errors; the dynamic chromaticity drifts owing to the decay of persistent-current field errors, whose successful automatic compensation depended on many details of the preceding magnet cycles, such as the length of the flat top, the ramp rate, etc; and, last but not least, the “snapback” – i.e. the sudden re-induction of the persistent currents in the superconducting cable at the start of the energy ramp. From my student days, I vividly remember how much the Tevatron experience guided the development of the later superconducting machines, such as HERA at DESY. This chapter also presents the Recycler, the first large-scale all-permanent-magnet storage ring, operating at 8 GeV.

In the following chapter, Chandra Bhat, Kiyomi Seiya and Shiltsev present two of the most fascinating techniques of longitudinal beam manipulation – slip stacking, which has doubled the proton intensity in the Main Injector, and radiofrequency barrier buckets, used for the accumulation and processing of antiprotons. Next, Alexey Burov, Lebedev and their colleagues discuss the Tevatron’s impedance and collective effects. There are noteworthy handy formulae for the transverse and longitudinal impedance of laminated vacuum chambers developed for the Tevatron, which I have used myself often.

Chapter six, by Richard Carrigan and several co-authors, treats mechanisms of emittance growth and beam loss, including important mitigation measures such as collimation, beam removal from the abort gap using the “Tevatron electron lens” as a pulsed exciter, tests of halo deflection with bent crystals, and the Tevatron luminosity model. Lebedev, Ralph Pasquinelli and others then delve into antiproton production, stochastic cooling and the first relativistic electron cooler, based on a 4.3 MV pelletron, which many of my colleagues had thought to be unfeasible. The antiproton source technology, which had begun at CERN, was brought to maturity at the Tevatron complex, where from 1994 to 2010 the antiproton intensity was raised by another factor of 10, making this the most powerful antiproton source constructed, by far. In chapter eight, Shiltsev and Valishev discuss beam–beam effects, including the famous “scallop”-shaped pattern of emittance growth along the antiproton bunch trains, which I witnessed myself fill after fill around the year 2002, while visiting the Tevatron control room. Finally, advanced beam instrumentation, including Schottky monitors and proton synchrotron-light diagnostics, are summarized in chapter nine.

At the end of the book I found a list of about 30 PhD theses, completed on accelerator-physics topics at the Tevatron across a span of about 25 years. I smiled when I realized that many of these earlier PhD students have become today’s leaders in the accelerator field. This illustrates the exceptional training experience from participating in a demanding and inspiring collider programme such as the Tevatron’s.

Undoubtedly, this book will serve as a wonderful and unique reference for many decades to come. The authors and editors are to be congratulated for their effort to compile and preserve the accelerator knowledge of the Tevatron, accumulated during 25 years of successful struggle and permanent innovation. The Tevatron’s lessons and achievements would be all too easily forgotten without such a written record. In conclusion, I recommend this book highly to accelerator professionals around the world. Reading it should be all but compulsory for anyone wishing to improve the performance of an existing frontier machine, or design the next generation of highest-energy colliders.

Reviews of Accelerator Science and Technology: Volume 6 – Accelerators for High Intensity Beams

By Alexander W Chao and Weiren Chou (eds)
World Scientific
Hardback: £98
E-book: £74
Also available at the CERN bookshop

9789814583244

As particle accelerators strive for ever-increasing performance, high-intensity particle beams are becoming one of the critical demands from a majority of users – whether for proton, electron or ion beams – and for most applications. The accelerator community has therefore put a great deal of effort into the pursuit of high-intensity accelerator performance, on a number of fronts. Recognizing the topic’s importance, the editors have dedicated this volume of Reviews of Accelerator Science and Technology to accelerators for high-intensity beams. As well as reviews of applications at the intensity frontier in particle and nuclear physics, this volume also looks at applications, for example, in radiography and the production of radiopharmaceuticals, as well as in accelerator-driven systems and the inertial production of fusion energy. Other chapters deal with different types of accelerator, such as superconducting hadron linacs and rapid-cycling synchrotrons, and accumulator rings for high-intensity hadron beams. Key accelerator subsystems that allow high-intensity operation are also covered, with chapters on ion injectors, ion charge-strippers, targets and secondary beams, neutron-beam lines and beam-material interactions. The final chapter follows the journal’s tradition of looking at people who have shaped the field. This time, Giorgio Brianti and David Plane contribute their personal recollections about John Adams, who made so many pioneering contributions to CERN’s unrivalled accelerator complex. In particular, it outlines Adams’s abilities as an international collaboration leader.

Path Integrals and Hamiltonians: Principles and Methods

By Belal E Baaquie
Cambridge University Press
Hardback: £75 $120
E-book: £96

51tDj3v9+cL

Providing a pedagogical introduction to the essential principles of path integrals and Hamiltonians, this book describes cutting-edge quantum-mathematical techniques applicable to a vast range of fields, from quantum mechanics, solid-state physics, statistical mechanics, quantum field theory and superstring theory to financial modelling, polymers, biology, chemistry and quantum finance. The powerful and flexible combination of Hamiltonian operators and path integrals is used to study a range of different quantum and classical random systems. With a practical emphasis on the methodological and mathematical aspects of each derivation, this introduction to these mathematical methods is suitable for researchers and graduate students in physics and engineering.

Nambu: A Foreteller of Modern Physics

By T Eguchi and M Y Han (eds)
World Scientific
Hardback: £45
E-book: £23

CCboo3_09_14

Seeds for many developments in contemporary particle physics were sown by Yoichiro Nambu in his lectures and papers in the 1960s and 1970s – in particular, his work on the mechanism of spontaneous broken symmetry, for which he was to receive the Nobel prize. Tackling first the problem of maintaining gauge invariance in a field theory of superconductivity, he went on to develop these ideas in field theories for elementary particles, in particular inspiring the important work that led to the Brout–Englert–Higgs (BEH) mechanism for generating mass through spontaneous symmetry breaking in the Standard Model. These developments culminated at CERN in July 2012 (not 2011, World Scientific please note) with the discovery of an appropriate scalar particle – a Higgs boson. This book collects together the important papers related to this story and much more, some never published before in book form. The text is not only of historical value, but also provides a window into the mind of a man that many refer to as “Nambu the seer”. It is a valuable resource for researchers in elementary particle theory, and for those who are interested in the history of modern physics.

Principles of Discrete Time Mechanics

By George Jaroszkiewicz
Cambridge University Press
Hardback: £85 $130
E-book: $104

9781107034297i

Could time be discrete on some unimaginably small scale? Exploring the idea in depth, this book systematically builds the theory up from scratch, beginning with the historical, physical and mathematical background to the chronon hypothesis. Covering classical and quantum discrete-time mechanics, the author presents all of the tools needed to formulate and develop applications of discrete-time mechanics in a number of areas, including classical and quantum mechanics and field theories.

Beam Dynamics in High Energy Particle Accelerators

By Andrzej Wolski
World Scientific
Hardback: £98
E-book: £74

CCboo2_09_14

This book by Andrzej Wolski is not a general textbook but, rather, a theoretical monograph on some of the basic physics of particle accelerators, with a strong emphasis on what can be treated analytically. It is decidedly not an introduction to accelerators. Indeed it contains no description, photo or diagram of what a particle accelerator looks like, no list of numerical parameters, nor any indication of what purposes such a device might serve. I could find no mention of the name, or energy, of any past or present accelerator. The unit of MeV first appears in relation to the spacing of spin resonances. I wonder whether the author consciously sought to imbue his work with a whiff of Whittaker’s treatise? No criticism intended – I rather admire his temerity – just make sure that you have some background before tackling this 590-page opus.

The first two words of the title are key to its coverage: beam dynamics is treated as an application of classical Hamiltonian mechanics and electrodynamics. These are the explicit prerequisites. Among existing books, those of S Y Lee (a little shorter and denser) and H Wiedemann (almost twice as long), are pitched at a similar level, but structured as textbooks with exercises and more applications.

I liked chapter one, a useful description of the electromagnetic fields in magnets and RF cavities that goes into more depth than most, and is careful to explain some key practical concepts that are sometimes taken for granted. On the other hand, there is no mention of how strong you can make those fields. Subsequent chapters cover thoroughly the well-trodden ground of linear single-particle dynamics and optics in the two transverse degrees of freedom, taking a Hamiltonian approach ab initio. I was a little disappointed in the perpetuation of an unfortunate choice of the canonical variables for longitudinal motion, first made in a well-known computer program in the 1980s. Perhaps it is as well to follow the crowd now, but subsequent Hamiltonians become messier than necessary, and there is some unnatural fudging around the dispersion function.

Unusually, but logically, longitudinal motion is treated in the context of a chapter on coupling, before the introduction of a formalism for full linear coupling. There is a standard discussion of synchrotron radiation (omitting the quantum lifetime) and low-emittance lattice modules for light sources. Nonlinear dynamics gets a great deal of attention, with discussions of the traditional topics of Lie transformations, canonical perturbation theory, symplectic integrators, nonlinear resonances, dynamic aperture and frequency map analysis. Practical results on linear perturbations are also worked in.

Like Lee and Wiedemann, Wolski says surprisingly little about colliders. There is no mention of low-beta collision optics, dispersion suppressors or separation schemes. A brief discussion of the head-on beam–beam effect and a passing mention of luminosity are appended to a more comprehensive discussion of single-beam space charge. Perhaps this reminds us that most accelerators are not colliders. There is a good derivation of the Touschek lifetime, but the standard results on intra-beam scattering (Piwinski, Bjorken–Mtingwa) are only quoted.

The final chapters cover wake-fields and impedances, and the collective instabilities they drive. The formal approach works well here, imposing order and clarity on what can be a confusing array of concepts and definitions. Several important beam- instability mechanisms are treated in detail.

The book seems relatively free of misprints (although there is a glaring one after equation 2.17). Overall, this is a recommendable addition to the literature, covering its topics clearly and thoroughly.

Edinburgh takes on the flavour of beauty

The magnificent Playfair Library in the historic centre of Edinburgh provided a spectacular setting for the scientific presentations of the 15th International Conference on B-Physics at Frontier Machines (Beauty 2014). The purpose of this conference series is to review the state of the art in the field of heavy-flavour physics, and to address the physics potential of existing and future B-physics experiments. This line of research aims to explore the Standard Model at the high-precision frontier, the goal being to reveal footprints of “new physics” originating from physics beyond the Standard Model in observables that can be predicted reliably. Hosted by the University of Edinburgh on 14–18 July, Beauty 2014 attracted around 90 physicists, including leading experts on flavour physics from across the world, to present and discuss the latest results in the field.

The key topics in flavour physics are strongly suppressed rare decays and decay-rate asymmetries that probe the phenomenon of CP violation. The non-invariance of weak interactions under combined charge-conjugation (C) and parity (P) transformations was discovered 50 years ago through the observation of KL → π+π decays (CERN Courier July/August 2014 p21). The Cabibbo–Kobayashi–Maskawa (CKM) mechanism, postulated 10 years later, allows CP violation to arise in the Standard Model, in particular in the decays of B mesons (CERN Courier December 2012 p15). These particles are hadronic bound states of a b antiquark and a u, d, s or c quark. In the case of the neutral B0d and B0s mesons, quantum-mechanical particle–antiparticle oscillations give rise to interference effects, which can induce manifestations of CP violation. Flavour-changing neutral currents are forbidden at the tree level in the Standard Model, and are therefore sensitive to new particles that might reveal themselves indirectly through their contributions to loop processes. These features are at the basis of the search for new physics at the high-precision frontier.

The exploration of B physics is dominated currently by the dedicated LHCb experiment, as well as the general-purpose ATLAS and CMS experiments at the LHC. The completion of the upgrade of the KEKB collider and the Belle detector in Japan in the coming years will see KEK re-join the B-physics programme, when the Belle II experiment starts up at SuperKEKB (CERN Courier January/February 2012 p21).

At Beauty 2014, the programme of 13 topical sessions included 61 invited talks. The majority covered a variety of new analyses and experimental results, complemented by a series of review talks on theoretical aspects. In addition, seven early-career researchers (PhD students and postdocs) presented posters in a dedicated session.

Highlights of the conference included a measurement of CP violation in the decay B0s → φφ, new results on the determination of the angle γ of the unitarity triangle from B → DK and B0s → D±sK± decays – the former of which receives contributions from “tree” topologies only – and B0s → K+K and B0d → π+π decays, which also receive “penguin” contributions where new particles might enter in the loops. The results for γ are consistent among one another within the uncertainties and the information on the unitarity triangle coming from global fits of various observables. The error on direct γ measurements is now approximately 9°, with significant contributions from the latest results from LHCb, which will continue to improve this precision. Impressive new measurements of the weak phase φs and decay-width difference ΔΓs were presented by CMS and LHCb in B0s → J/ψφ and B0s → J/ψππ decays. The latter is now the most precise φs result, with an uncertainty of 68 mrad, and the results are in agreement with the predictions of the Standard Model.

In the field of rare B-meson decays, there were reports on impressive theoretical progress for B0s → μ+μ decays. This is one of the rarest decays that nature has to offer, and is therefore a very sensitive probe of new physics. Theoretical improvements relate to the calculation of higher-order electroweak and QCD corrections, which resulted in a higher precision on the predicted theoretical Standard Model branching ratio for this channel. The experimental evidence for this decay was reported by the CMS and LHCb collaborations in the summer of 2013, and is one of the highlights of Run 1 of the LHC. New combined results have recently been made public by the two collaborations.

Measurements of the angular distribution of the rare B0d → K*0μ+μ decay and comparison with respect to calculations within the Standard Model was another hot topic. A discrepancy is observed in a single bin in the distribution of the so-called P5´ observable. The key question is whether strong-interaction processes or new physics effects are causing this discrepancy. The possibilities led to interesting discussions during the session, which continued during the coffee breaks. Improved statistics on this and related channels from Run 2 at the LHC are awaited eagerly.

The opening talk of the conference was given by John Ellis of King’s College London and CERN, who presented his perspective and vision for the search for new physics

In the ratio of the rates of B+ → K+μ+μ and B+ → K+e+e decays, which test lepton-flavour universality, LHCb reported a new 2.6σ deviation from the Standard Model, which has to be explored in more detail. Moreover, first results on measurements of the photon polarization in b → sγ by the B factories and LHCb were presented, and this will be studied in a more powerful way by Belle II and the upgraded LHCb.

Many other interesting measurements and developments were discussed at the conference. One of these concerned the first observation of a heavy-flavoured spin-3 particle, the D*s(2860) meson, observed by LHCb in the decay of a B0s meson (CERN Courier September 2014 p8). Another was the confirmation of an exotic resonance Z(4430) composed of four quarks, also by LHCb (CERN Courier June 2014 p12). In addition, many more results were presented on heavy-flavour production and spectroscopy at the B factories, at Fermilab’s Tevatron and at the ALICE, ATLAS, CMS and LHCb experiments.

On the theory frontier, there was an excellent review of the spectroscopy of B hadrons and bottomonium. Impressive progress reported in the calculation of non-perturbative parameters with lattice QCD has already had an important impact on various analyses. Other topics included the status of lepton-flavour violation and models of physics beyond the Standard Model, searches for exotic new physics such as Majorana neutrinos, charm physics and rare kaon decays.

The opening talk of the conference was given by John Ellis of King’s College London and CERN, who presented his perspective and vision for the search for new physics – in particular supersymmetry – at the LHC and beyond. A whole session was devoted to prospects for the future B-physics programme, addressing the upgrades of LHCb, ATLAS, CMS and Belle II. An exciting summary and outlook talk by Hassan Jawahery of the University of Maryland concluded the conference.

The University of Edinburgh provided an impressive social programme. No visit to Scotland is complete without whisky tasting, and participants were treated to the option of 25 different samples. A walking tour of the historic Edinburgh Castle was complemented by a bus tour and a boat ride under the famous Forth Bridge. The conference dinner, held at the Dynamic Earth museum, included another Scottish speciality – haggis.

In conclusion, the 15th Beauty conference was a great success, with presentations of exciting new results. Now it is time to look forward to the next edition, to be held in the spring of 2016.

Valencia welcomes the world of particle physics

In the field of elementary particle physics, the International Conference on High Energy Physics (ICHEP) is the largest meeting organized at a global level. Having started in 1950 at Rochester in New York, it was for several years known simply as the “Rochester Conference”. Organized by Section C11 (Particles and Fields) of the International Union for Pure and Applied Physics (IUPAP), the conferences have since taken place across the world, in recent years in Philadelphia (2008), Paris (2010) and Melbourne (2012), for example.

For its 37th edition, ICHEP went to Spain for the first time, where it took place at the Valencia Conference Centre on 2–9 July. The selection of Spain as host of the prestigious conference is recognition of the country’s progress in this field of fundamental knowledge. Its importance for Spain was clear from the presence at the inaugural session of Carmen Vela, secretary of state for research, development and innovation from the Ministry of Economy and Competitiveness, as well as several other academic and regional government representatives. ICHEP 2014 attracted a total of 967 scientists from 53 countries, with the largest delegation of 193 participants coming from Spain. The main international laboratories in the field were well represented, many at a high level: the directors of CERN, DESY, Fermilab, KEK and the Institute of High Energy Physics, Beijing, attended the conference, and participated actively in several sessions.

After the formidable impact in the media of the announcement of the discovery of the Brout–Englert–Higgs (BEH) boson at CERN on 4 July 2012, on the eve of the opening of the previous ICHEP in Melbourne (CERN Courier September 2012 p53), it was somehow unrealistic to hope that an announcement or confirmation of a result of similar outstanding scientific consequences would happen in Valencia. In this field of science, spectacular milestones alternate with less glamorous phases in which levels of knowledge are consolidated. In many cases, the construction of complete sets of precision measurements, and a deep understanding of them, reveal the way towards progress, and indicate the right roads of exploration to follow. In this respect, and given the large variety of data sets, analyses and interpretations of results presented, ICHEP 2014 did not disappoint.

Following what has become common practice in the ICHEP series, the programme in Valencia consisted of parallel and plenary sessions. In the 15 parallel sessions, 538 experimental and theoretical communications were presented, covering most of the areas in the field. A summary of the results discussed in these sessions was then given in 55 talks in the 42 plenary sessions that took place in the second half of the conference. The scientific programme was completed with 18 additional talks, as well as a display of more than 200 posters summarizing the work of young researchers.

The results of the experiments at CERN’s LHC and Fermilab’s Tevatron – studying proton–proton, proton–lead, lead–lead and proton–antiproton collisions at high energy – were presented in detail, those from the LHC being based on all of the data collected up to the start of the first long shutdown early in 2013. In particular, the dynamical features of the processes in these energy ranges (the QCD domain), the static and dynamical properties of the BEH boson, the properties of the top quark, the extremely rare decay modes and very small branching ratios of hadrons containing a b quark, and appropriate comparisons with the Standard Model figured in many of the presentations.

Although, the Standard Model explains most of the precise measurements collected up to now at a variety of experimental facilities, it is accepted widely that there are still plenty of questions to be answered – a situation that underlies the need to modify and extend the current paradigm to cure the detected weaknesses. Among the most notorious of these is the lack of understanding of the nature of dark matter – an intriguing form of matter that cannot be explained by the quarks and leptons of the Standard Model, and so points towards new physics. The capability of new models, such as supersymmetry, theories with extra dimensions, technicolour, etc, to overcome this and other conceptual and observational difficulties must be evaluated in the coming years, when the availability of new sets of data become a reality, in particular from the upgraded LHC.

Celebrating CERN’s 60th anniversary

On the occasion of CERN’s 60th anniversary, the ICHEP 2014 organizing committee thought it appropriate to schedule a special session to highlight the contributions of this unique organization to the acquisition of scientific and technological knowledge in basic science, as well as the important role that CERN has played in fostering international collaboration, in the worlds of  academia and education, in the training of researchers, engineers and technicians, and in activities dealing with knowledge and technology transfer to the industrial and business communities.

Speaking first, Rolf Heuer, CERN’s director-general, stressed the relevance of basic research in fostering technological development and innovation in a global and open worldwide environment, and sent encouraging key messages to the youngest sector of the audience. Lyn Evans, former head of the LHC Project, then gave a lively recollection of the technical developments and immense challenges involved in bringing the LHC construction project to a happy conclusion. He was followed by Sergio Bertolucci, director of research and computing technology, who reviewed CERN’s current activities and some of its past achievements, as well as the ongoing tasks related to future options following the road map defined by the European Strategy for Particle Physics approved by CERN Council in 2013. The many ongoing technical activities related to the LHC – which will start a new phase of operation at higher energy and luminosity in the spring of 2015 – were then presented by Miguel Jiménez, head of the technology department. Finally, Manuel Aguilar of CIEMAT summarised the successful evolution of high-energy particle physics in Spain, and the important role that CERN has played in this context (see “CERN and Spain”, below).

The presentation and discussion of new and relevant results in neutrino physics, obtained in a diverse set of experimental facilities, was another highlight of the conference, together with many topics in astroparticle physics and cosmology. The recent results obtained at the BICEP2 telescope at the South Pole – which might provide the first experimental evidence of cosmic inflation – and the current status of the analysis of the data collected by the European satellite Planck, together with the theoretical implications of these measurements, deserved particular attention. This special session on cosmology and particle physics, which was a major highlight of the conference, was closed beautifully with a splendid lecture by Alan Guth, one of the distinguished proponents of the theory of cosmic inflation.

The status of projects at different stages of design and prototyping for the construction of new large scientific installations (linear and circular colliders, neutrino beams and detectors, underground laboratories for the study of neutrinos and dark-matter candidates, detector arrays for high-energy cosmic rays, satellites and other space platforms, etc), and the regional strategies and road maps, are topics that were included in another interesting session, leading to ample discussions. The programme of the parallel sessions also included presentations dealing with the formidable effort that, at the global level, is carried out in R&D activities on detectors, accelerators, data acquisition and trigger issues, and computing technologies. Last but not least, the role and relevance of outreach and the relations between science, technology, industry and society were analysed and discussed.

The plenary sessions provided summaries of the contributions presented in the parallel sessions, as well as a concluding synthesis of the contents of the conference and on the future of the field. As emphasized in the closing talks by Young-Kee Kim of the University of Chicago and Antonio Pich of the University of Valencia, a wealth of new data has led to considerable advances in many areas since the previous ICHEP two years ago. However, it became equally clear that, in the years to come, there remains plenty of challenging work to be done to answer the many intricate and fundamental open questions that the field still faces. One subject that will trigger further attention in future is the possible connection between the scalar field responsible for electroweak-symmetry breaking (the BEH boson) and the scalar field that might be at the origin of cosmic inflation in the early stages of the universe (the inflaton). The solution to this and many other fascinating questions is awaiting new experimental data and revolutionary theoretical ideas. With all of these ingredients, this area of fundamental knowledge is clearly facing a challenging and exciting future.

In addition to the scientific programme, participants at the conference were able to appreciate an exhibition of posters concerning the situation of women studying physics in Palestine, while another exhibition showed the connection between art and scientific research. CERN’s travelling exhibition “Accelerating Science”, displayed at the Ciudad de las Artes y las Ciencias in Valencia’s town centre, received plenty of attention from the general public. The conference also had impressive media coverage in the press, the main broadcasting networks and in national and regional television channels. Around 15 journalists from the most relevant media in science communication attended sessions, reported on the main events and interviewed numerous participants.

A highlight of the social programme was the marvellous concert on the theme of “Science and music working for peace”, given by the Orchestra and Chamber Choir of the Professional Conservatoire of Music of Valencia. This was accompanied by the projection of images – many unpublished – relating to the history of CERN and the development of particle physics in Spain. Finally, the conference banquet at the wonderful Huerto de Santa María provided a brilliant ending for the social programme.

• The Spanish institution in charge of organization was the Instituto de Física Corpuscular (IFIC), Joint Centre University of Valencia – CSIC (Council for Scientific Research). There was also ample sponsorship from several domestic and international institutions.

CERN and Spain

This year has seen celebrations of the 30th anniversary of the return of Spain to CERN in November 1983, after a long period of absence that began in 1969. Many generations of Spanish researchers, engineers and technicians have been educated and trained in the international, highly competitive and technological CERN environment, At the same time, numerous companies and industrial firms in Spain have become acquainted with a diverse range of techniques, procedures and innovations, many of them at the forefront of technology and with remarkable potential. It is appropriate to recognize not only the nurturing effect that CERN has had in the positive evolution of science in Spain – particularly the experimental and technological components – but also the importance for CERN of having Spain among its member states. Today, Spain contributes approximately 8.5% to the CERN budget and, beyond this substantial support, brings a well-trained and motivated community that is eager to take part in the CERN adventure.

 

CERN celebrates 60th anniversary in style

The ceremony was attended by official delegations from 35 countries, while other events attracted people from CERN and in the surrounding area to listen to talks, hear music, and see science in the streets. At the same time, webcasts took many of the activities to a much wider “internet” audience, who could also participate in the celebrations via social media.

Celebrations will continue in many different places during the rest of the year. To find out more, visit http://cern60.web.cern.ch/.

The official CERN60 ceremony on 29 September featured the European Union Youth Orchestra, directed by Maestro Vladimir Ashkenazy, with 42 musicians covering all of CERN member and observer states.

An address by the president of the CERN Council, Agnieszka Zalewska, marked the culmination of speeches that had been given by official delegates from the UK, France, Switzerland, Italy, Germany and Portugal.

On 29 September, the German federal minister of education and research, Johanna Wanka, was one of the 35 official delegations to sign the guestbook, with Sigurd Lettow, CERN’s director for administration and general infrastructure.

On 19 September, during a week of CERN Council meetings, a symposium celebrated the 60th anniversary of the first Council session, held in October 1954, just one week after the CERN Convention entered into force. Speakers included CERN’s librarian, Jens Vigen, who presented highlights of Council’s history, here with a view of the Council chamber at CERN.

Croatian students of Gymnasium “Fran Galović” Koprivnica were just some of many who sent in images via social media, with the hashtag #MyCERN60, to wish CERN a happy 60th birthday. Through drawings, cakes, parties and more, people around the world contributed in beautiful and heart-warming ways.

On 17 September, a symposium on “60 years of CERN – 60 years of Science for Peace” took place in the Globe of Science and Innovation. It focussed on the human achievements throughout CERN’s history, and the role that the organization has played in promoting international co-operation. Talks included “SESAME: a parallel universe in the Middle East?” by Eliezer Rabinovici, of the Hebrew University in Jerusalem.

The United Nations Orchestra performed a concert at CERN on 19 September to celebrate the 60th anniversary. Under the baton of conductor and artistic director Antoine Marguier, the orchestra accompanied soloist Matteo Fedeli, who, under the patronage of the Permanent Mission of Italy to the United Nations, performed on a Stradivarius violin.

CERN took part in the annual European Researchers’ Night on 26 September with “Pop Science”, in which CERN researchers showcased their work at multiple venues in Geneva and neighbouring France. The event mixed arts, poetry, theatre, music and science, and included shows with liquid nitrogen, CERNLand games for young people and numerous talks and discussions.

The second TEDxCERN event took place on 24 September, with the theme “Forward: Charting the future with science”. Of the many inspirational talks, Jamie Edwards, now 14, received a standing ovation after he spoke about attempting to achieve nuclear fusion in his school lab by colliding the nuclei of hydrogen atoms via inertial electrostatic confinement.

CERN Courier joined in the celebrations with a 60 made from issues from the past few years, including the one for the anniversary itself.

bright-rec iop pub iop-science physcis connect