Comsol -leaderboard other pages

Topics

Shy charm mesons confound predictions

ALICE figure 1

In the past two decades, it has become clear that three-quark baryons and quark–antiquark mesons cannot describe the full spectrum of hadrons. Dozens of exotic states have been observed in the charm sector alone. These states are either interpreted as compact objects with four or five valence quarks or as hadron molecules, however, their inner structures remain uncertain due to the complexity of calculations in quantum chromodynamics (QCD) and the lack of direct experimental measurements of the residual strong interaction between charm and light hadrons. New femtoscopy measurement by the ALICE collaboration challenge theoretical expectations and the current understanding of QCD.

Femtoscopy is a well-established method for studying the strong interactions between hadrons. Experimentally, this is achieved by studying particle pairs with small relative momentum. In high-energy collisions of protons at the LHC, the distance between such hadrons at the time of production is about one femtometre, which is within the range of the strong nuclear force. From the momentum correlations of particle pairs, one extracts the scattering length, a0, which quantifies the final-state strong interaction between the two hadrons. By studying the momentum correlations of emitted particle pairs, it is possible to access the final-state interactions of even short-lived hadrons such as D mesons.

The scattering lengths are significantly smaller than the theoretical predictions

The ALICE collaboration has now, for the first time, measured the interaction of open-charm mesons (D+ and D*+) with charged pions and kaons for all the charge combinations. The momentum correlation functions of each system were measured in proton–proton collisions in the LHC at a centre-of-mass energy of 13 TeV. As predicted by heavy-quark spin symmetry, the scattering lengths of Dπ and D*π agree with each other, but they are found to be significantly smaller than the theoretical predictions (figure 1). This implies that the interaction between these mesons can be fully explained by the Coulomb force, and the contribution from strong interactions is negligible within experimental precision. The small measured values of the scattering length challenge our understanding of the residual strong force of heavy-flavour hadrons in the non-perturbative limit of QCD.

These results also have an important impact on the study of the quark–gluon plasma (QGP) – a deconfined state of matter created in ultra-relativistic heavy-ion collisions. The rescattering of D mesons with the other hadrons (mostly pions and kaons) created in such collisions was thought to modify the D-meson spectra, in addition to the modification expected from the QGP formation. The present ALICE measurement demonstrates, however, that the effect of rescattering is expected to be very small.

More precise and systematic studies of charm–hadron interactions will be carried out with the upgraded ALICE detector in the upcoming years.

A logical freight train

Steven Weinberg was a logical freight train – for many, the greatest theorist of the second half of the 20th century. It is timely to reflect on his legacy, the scientific component of which is laid out in a new collection of his publications selected by theoretical physicist Michael Duff (Imperial College).

Six chapters cover Weinberg’s most consequential contributions to effective field theory, the Standard Model, symmetries, gravity, cosmology and short-form popular science writing. I can’t identify any notable omissions and I doubt many others would, though some may raise an eyebrow at the exclusion of his paper deriving the Lee–Weinberg bound. Duff brings each chapter to life with first-hand anecdotes and details that will delight those of us most greatly separated from historical events. I am relatively young, and only had one meaningful interaction with Steven Weinberg.  Though my contemporaries and I inhabit a scientific world whose core concepts are interwoven with, if not formed by, Steven Weinberg’s scientific legacy, unlike Michael Duff we are poorly qualified to comment historically on the ecosystem in which this legacy grew, nor on aspects of personality. This makes his commentary particularly valuable to younger readers.

I can envisage three distinct audiences for this new collection. The first is the lay theorist – those who are widely enough read to recognise the depth of Weinberg’s impact in theoretical physics and would like to know more. Such readers will find Duff’s introductions to be insightful and entertaining – helpful preparation for the more technical aspects of the papers, though expertise is required to fully grapple with many of them. There are also a few hand-picked non-technical articles one would otherwise not encounter without some serious investigative effort, including some accessible articles on quantum field theory, effective field theory and life in the multiverse, in addition to the dedicated section on popular articles. These will delight any theory afficionado.

The second audience is practising theorists. If you’re going to invest in a printed collection of publications, then Weinberg is an obvious protagonist. Particle theorists consult his articles so often that they may as well have them close at hand. This collection contains those most often revisited and ought to be useful in this respect. Duff’s introductions also expose technical interconnections between the articles that might otherwise be missed.

Steven Weinberg: Selected Papers

The third audience I have in mind are beginning graduate students in particle theory, cosmology and beyond. It would not be a mistake to put this collection on recommended reading lists. In due course, most students should read many of these papers multiple times, so why not get on with it from the get-go? The section on effective field theories (EFTs) contains many valuable key ideas and perspectives. Plenty of those core concepts are still commonly encountered more by osmosis than with any rigour, and this can lead to confused notions around the general approach of EFT. Perhaps an incomplete introduction to EFT could be avoided for graduate students by cutting straight to the fundamentals contained here? The cosmology section also reveals many important modern concepts alongside lucid and fearless wrestling with big questions. The papers on gravity detail techniques that are frequently encountered in any first foray into modern amplitudology, as well as strategies to infer general lessons in quantum field theory from symmetries and self-consistency alone.

In my view, however, the most important section for beginning graduate students is that on the construction of the Standard Model (SM). It may be said that a collective amnesia has emerged regarding the scientific spirit that drove its development. The SM was built by model builders. I don’t say this facetiously. They made educated guesses about the structure of the “ultraviolet” (microscopic) world based on the “infrared” (long-distance) breadcrumbs embedded within low-energy experimental observations. Decades after this swashbuckling era came to an end, there is a growing tendency to view the SM as something rigid, providentially bestowed and permanent. The academic bravery and risk-taking that was required to take the necessary leaps forward then, and which may be required now, is no better demonstrated than in “A Model of Leptons”. All young theorists should read this multiple times. A Model of Leptons exemplifies that not only was Steven Weinberg an unstoppable force of logic, but also a plucky risk taker. It’s inspirational that its final paragraph, which laid out the structure of nature at the electroweak scale, ends with doubt and speculation: “And if this model is renormalisable, then what happens when we extend it to include the couplings of A and B to the hadrons?” By working their way through this collection, graduate students may be inspired to similar levels of ambition and jeopardy.

Amongst the greatest scientists of the last century

In the weeks that followed the passing of Stephen Weinberg, I sensed amongst a number of colleagues of all generations some moods that I could have anticipated; of the loss of not only a bona fide truth-seeker, but also of a leader, frequently the leader. I also perceived a feeling that transcended the scientific realm alone, of someone whose creative genius ought to be recognised amongst the greatest of scientists, musicians, artists and humanity of the last century. How can we productively reflect on that? I imagine we would all do well to learn not only of Weinberg’s important individual scientific insights, but also to attempt to absorb his overall methodology in identifying interesting questions, in breaking new trails in fundamental physics, and in pursuing logic and clarity wherever they may take you. This collection is not a bad place to start.

The inventive pursuit of UHF gravitational waves

Since their first direct detection in 2015, gravitational waves (GWs) have become pivotal in our quest to understand the universe. The ultra-high-frequency (UHF) band offers a window to discover new physics beyond the Standard Model (CERN Courier March/April 2022 p22). Unleashing this potential requires theor­etical work to investigate possible GW sources and experiments with far greater sensitivities than those achieved today.

A workshop at CERN from 4 to 8 December 2023 leveraged impressive experimental progress in a range of fields. Attended by nearly 100 international scientists – a noteworthy increase from the 40 experts who attended the first workshop at ICTP Trieste in 2019 – the workshop showcased the field’s expanded research interest and collaborative efforts. Concretely, about 10 novel detector concepts have been developed since the first workshop.

One can look for GWs in a few different ways: observing changes in the space between detector components, exciting vibrations in detectors, and converting GWs into electromagnetic radiation in strong magnetic fields. Substantial progress has been made in all three experimental directions.

Levitating concepts

The leading concepts for the first approach involve optically levitated sensors such as high-aspect-ratio sodium–cyttrium–fluoride prisms, and semi-levitated sensors such as thin silicon or silicon–nitride nanomembranes in long optical resonators. These technologies are currently under study by various groups in the Levitated Sensor Detectors collaboration and at DESY.

For the second approach, the main focus is on millimetre-scale quartz cavities similar to those used in precision clocks. A network of such detectors, known as GOLDEN, is being planned, involving collaborations among UC Davis, University College London and Northwestern University. Superconducting radio-frequency cavities also present a promising technology. A joint effort between Fermilab and DESY is leveraging the existing MAGO prototype to gain insights and design further optimised cavities.

Regarding the third approach, a prominent example is optical high-precision interferometry, combined with a series of accelerator dipole magnets similar to those used in the light-shining-through-a-wall axion-search experiment, ALPS II (Any Light Particle Search II) or the axion helioscope CAST and its planned successor IAXO. In fact, ALPS II is anticipated to commence a dedicated GW search in 2028. Additionally, other notable concepts inspired by axion dark-matter searches involve toroidal magnets, exemplified by experiments like ABRACADABRA, or solenoidal magnets such as BASE or MADMAX.

All three approaches stand to benefit from burgeoning advances in quantum sensing, which promise to enhance sensitivities by orders of magnitude. In this landscape, axion dark-matter searches and UHF GW detection are poised to work in close collaboration, leveraging quantum sensing to achieve unprecedented results. Concepts that demonstrate synergies with axion-physics searches are crucial at this stage, and can be facilitated by incremental investments. Such collaboration builds awareness within the scientific community and presents UHF searches as an additional, compelling science case for their construction.

The workshop showcased the fields expanded research interest and collaborative efforts

Cross-disciplinary research is also crucial to understand cosmological sources and constraints on UHF GWs. For the former, our understanding of primordial black holes has significantly matured, transitioning from preliminary estimates to a robust framework. Additional sources, such as parabolic encounters and exotic compact objects, are also gaining clarity. For the latter, the workshop highlighted how strong magnetic fields in the universe, such as those in extragalactic voids and planetary magnetospheres, can help set limits on the conversion between electromagnetic and gravitational waves.

Despite much progress, the sensitivity needed to detect UHF GWs remains a visionary goal, requiring the constant pursuit of inventive new ideas. To aid this, the community is taking steps to be more inclusive. The living review produced after the first workshop (arXiv:2011.12414) will be revised to be more accessible for people outside our community, breaking down detector concepts into fundamental building blocks for easier understanding. Plans are also underway to establish a comprehensive research repository and standardise data formats. These initiatives are crucial for fostering a culture of open innovation and expanding the potential for future breakthroughs in UHF GW research. Finally, a new, fully customisable and flexible GW plotter including the UHF frequency range is being developed to benefit the entire GW community.

The journey towards detecting UHF GWs is just beginning. While current sensitivities are not yet sufficient, the community’s commitment to developing innovative ideas is unwavering. With the collective efforts of a dedicated scientific community, the next leap in gravitational-wave research is on the horizon. Limits exist to be surpassed!

The neutrino mass puzzle

After all these years, neutrinos remain extraordinary – and somewhat deceptive. The experimental success of the three-massive-neutrino paradigm over the past 25 years makes it easy to forget that massive neutrinos are not part of the Standard Model (SM) of particle physics.

The problem lies with how neutrinos acquire mass. Nonzero neutrino masses are not possible without the existence of new fundamental fields, beyond those that are part of the SM. And we know virtually nothing about the particles associated with them. They could be bosons or fermions, light or heavy, charged or neutral, and experimentally accessible or hopelessly out of reach.

This is the neutrino mass puzzle. At its heart is the particle’s uniquely elusive nature, which is both the source of the problem and the main challenge in resolving it.

Mysterious and elusive

Despite outnumbering other known massive particles in the universe by 10 orders of magnitude, neutrinos are the least understood of the matter particles. Unlike electrons, they do not participate in electromagnetic interactions. Unlike quarks, they do not participate in the strong interactions that bind protons and neutrons together. Neutrinos participate only in aptly named weak interactions. Out of the trillions of neutrinos that the Sun beams through you each second, only a handful will interact with your body during your lifetime.

A pink puzzle piece representing neutrinos

Neutrino physics has therefore had a rather tortuous and slow history. The existence of neutrinos was postulated in 1930 but only confirmed in the 1950s. The hypothesis that there are different types of neutrinos was first raised in the 1940s but only confirmed in the 1960s. And the third neutrino type, postulated when the tau lepton was discovered in the 1970s, was only directly observed in the year 2000. Nonetheless, over the years neutrino experiments have played a decisive role in the development of the most successful theory in modern physics: the SM. And at the turn of the 21st century, neutrino experiments revealed that there is something missing in its description of particle physics.

Neutrinos are fermions with spin one-half that interact with the charged leptons (the electron, muon and tau lepton) and the particles that mediate the weak interactions (the W and Z bosons). There are three neutrino types, or flavours: electron-type (νe), muon-type (νμ) and tau-type (ντ), and each interacts exclusively with its namesake charged lepton. One of the predictions of the SM is that neutrino masses are exactly zero, but a little over 25 years ago, neutrino experiments revealed that this is not exactly true. Neutrinos have tiny but undeniably nonzero masses.

Mixing it up

The search for neutrino masses is almost as old as Pauli’s 93-year-old postulate that neutrinos exist. They were ultimately discovered around the turn of the millennium through the observation of neutrino flavour oscillations. It turns out that we can produce one of the neutrino flavours (for example νμ) and later detect it as a different flavour (for example νe) so long as we are willing to wait for the neutrino flavour to change. The probability associated with this phenomenon oscillates in spacetime with a characteristic distance that is inversely proportional to the differences of the squares of the neutrino masses. Given the tininess of neutrino masses and mass splittings, these distances are frequently measured in hundreds of kilometres in particle-physics experiments.

Neutrino oscillations also require the leptons to mix. This means that the neutrino flavour states are not particles with a well defined mass but are quantum superpositions of different neutrino states with well defined masses. The three mass eigenstates are related to the three flavour eigenstates via a three-dimensional mixing matrix, which is usually parameterised in terms of mixing angles and complex phases.

The masses of all known matter particles

In the last few decades, precision measurements of neutrinos produced in the Sun, in the atmosphere, in nuclear reactors and in particle accelerators in different parts of the world, have measured the mixing parameters at the several percent level. Assuming the mixing matrix is unitary, all but one have been shown to be nonzero. The measurements have revealed that the three neutrino mass eigenvalues are separated by two different mass-squared differences: a small one of order 10–4 eV2 and a large one of order 10–3 eV2. Data therefore reveal that at least two of the neutrino masses are different from zero. At least one of the neutrino masses is above 0.05 eV, and the second lightest is at least 0.008 eV. While neutrino oscillation experiments cannot measure the neutrino masses directly, precise measurements of beta-decay spectra and constraints from the large-scale structure of the universe offer complementary upper limits. The nonzero neutrino masses are constrained to be less than roughly 0.1 eV.

These masses are tiny when compared to the masses of all the other particles (see “Chasm” figure). The mass of the lightest charged fermion, the electron, is of order 106 eV. The mass of the heaviest fermion, the top quark, is of order 1011 eV, as are the masses of the W, Z and Higgs bosons. These particle masses are all at least seven orders of magnitude heavier than those of the neutrinos. No one knows why neutrino masses are dramatically smaller than those of all other massive particles.

The Standard Model and mass

To understand why the SM predicts neutrino masses to be zero, it is necessary to appreciate that particle masses are complicated in this theory. The reason is as follows. The SM is a quantum field theory. Interactions between the fields are strictly governed by their properties: spin, various “local” charges, which are conserved in interactions, and – for fermions like the neutrinos, charged leptons and quarks – another quantum number called chirality.

In quantum field theories, mass is the interaction between a right-chiral and a different left-chiral field. A naive picture is that the mass-interaction constantly converts left-chiral states into right-chiral ones (and vice versa) and the end result is a particle with a nonzero mass. It turns out, however, that for all known fermions, the left-chiral and right-chiral fermions have different charges. The immediate consequence of this is that you can’t turn one into the other without violating the conservation of some charge so none of the fermions are allowed to have mass: the SM naively predicts that all fermion masses are zero!

The Higgs field was invented to fix this shortcoming. It is charged in such a way that some right-chiral and left-chiral fermions are allowed to interact with one another plus the Higgs field which, uniquely among all known fields, is thought to have been turned on everywhere since the phase transition that triggered electroweak symmetry breaking very early in the history of the universe. In other words, so long as the vacuum configuration of the Higgs field is not trivial, fermions acquire a mass thanks to these interactions.

This is not only a great idea; it is also at least mostly correct, as spectacularly confirmed by the discovery of the Higgs boson a little over a decade ago. It has many verifiable consequences. One is that the strength with which the Higgs boson couples to different particles is proportional to the particle ’s mass – the Higgs prefers to interact with the top quark or the Z or W bosons relative to the electron or the light quarks. Another consequence is that all masses are proportional to the value of the Higgs field in the vacuum (1011 eV) and, in the SM, we naively expect all particle masses to be similar.

Neutrino masses are predicted to be zero because, in the SM, there are no right-chiral neutrino fields and hence none for the left-chiral neutrinos – the ones we know about – to “pair up” with. Neutrino masses therefore require the existence of new fields, and hence new particles, beyond those in the SM.

Wanted: new fields

The list of candidate new fields is long and diverse. For example, the new fields that allow for nonzero neutrino masses could be fermions or bosons; they could be neutral or charged under SM interactions, and they could be related to a new mass scale other than the vacuum value of the SM Higgs field (1011 eV), which could be either much smaller or much larger. Finally, while these new fields might be “easy” to discover with the current and near-future generation of experiments, they might equally turn out to be impossible to probe directly in any particle-physics experiment in the foreseeable future.

Though there are too many possibilities to list, they can be classified into three very broad categories: neutrinos acquire mass by interacting with the same Higgs field that gives mass to the charged fermions; by interacting with a similar Higgs field with different properties; or through a different mechanism entirely.

A purple puzzle piece representing neutrinos

At first glance, the simplest idea is to postulate the existence of right-chiral neutrino fields and further assume they interact with the Higgs field and the left-chiral neutrinos, just like right-chiral and left-chiral charged leptons and quarks. There is, however, something special about right-chiral neutrino fields: they are completely neutral relative to all local SM charges. Returning to the rules of quantum field theory, completely neutral chiral fermions are allowed to interact “amongst themselves” independent of whether there are other right-chiral or left-chiral fields around. This means the right-chiral neutrino fields should come along with a different mass that is independent from the vacuum value of the Higgs field of 1011 eV.

To prevent this from happening, the right-chiral neutrinos must possess some kind of conserved charge that is shared with the left-chiral neutrinos. If this scenario is realised, there is some new, unknown fundamental conserved charge out there. This hypothetical new charge is called lepton number: electrons, muons, tau leptons and neutrinos are assigned charge plus one, while positrons, antimuons, tau antileptons and antineutrinos have charge minus one. A prediction of this scenario is that the neutrino and the antineutrino are different particles since they have different lepton numbers. In more technical terms, the neutrinos are massive Dirac fermions, like the charged leptons and the quarks. In this scenario, there are new particles associated with the right-chiral neutrino field, and a new conservation law in nature.

Accidental conservation

As of today, there is no experimental evidence that lepton number is not conserved, and readers may question if this really is a new conservation law. In the SM, however, the conservation of lepton number is merely “accidental” – once all other symmetries and constraints are taken into account, the theory happens to possess this symmetry. But lepton number conservation is no longer an accidental symmetry when right-chiral neutrinos are added, and these chargeless and apparently undetectable particles should have completely different properties if it is not imposed.

If lepton number conservation is imposed as a new symmetry of nature, making neutrinos pure Dirac fermions, there appears to be no observable consequence other than nonzero neutrino masses. Given the tiny neutrino masses, the strength of the interaction between the Higgs boson and the neutrinos is predicted to be at least seven orders of magnitude smaller than all other Higgs couplings to fermions. Various ideas have been proposed to explain this remarkable chasm between the strength of the neutrino’s interaction with the Higgs field relative to that of all other fermions. They involve a plurality of theoretical concepts including extra-dimensions of space, mirror copies of our universe and dark sectors.

Nonzero neutrino masses

A second possibility is that there are more Higgs fields in nature and that the neutrinos acquire a mass by interacting with a Higgs field that is different from the one that gives a mass to the charged fermions. Since the neutrino mass is proportional to the vacuum value of a different Higgs field, the fact that the neutrino masses are so small is easy to tolerate: they are simply proportional to a different mass scale that could be much smaller than 1011 eV. Here, there are no right-chiral neutrino fields and the neutrino masses are interactions of the left-chiral neutrino fields amongst themselves. This is possible because, while the neutrinos possess weak-force charge they have no electric charge. In the presence of the nontrivial vacuum of the Higgs fields, the weak-force charge is effectively not conserved and these interactions may be allowed. The fact that the Higgs particle discovered at the LHC – associated with the SM Higgs field – does not allow for this possibility is a consequence of its charges. Different Higgs fields can have different weak-force charges and end up doing different things. In this scenario, the neutrino and the antineutrino are, in fact, the same particle. In more technical terms: the neutrinos are massive Majorana fermions.

Neutrino masses require the existence of new fields, and hence new particles, beyond those in the Standard Model

One way to think about this is as follows: the mass interaction transforms left-chiral objects into right-chiral objects. For electrons, for example, the mass converts left-chiral electrons into right-chiral electrons. It turns out that the antiparticle of a left-chiral object is right-chiral and vice versa, and it is tempting to ask whether a mass interaction could convert a left-chiral electron into a right-chiral positron. The answer is no: electrons and positrons are different objects and converting one into the other would violate the conservation of electric charge. But this is no barrier for the neutrino, and we can contemplate the possibility of converting a left-chiral neutrino into its right-chiral antiparticle without violating any known law of physics. If this hypothesis is correct, the hypothetical lepton-number charge, discussed earlier, cannot be conserved. This hypothesis is experimentally neither confirmed nor contradicted but could soon be confirmed with the observation of neutrinoless double-beta decays – nuclear decays which can only occur if lepton-number symmetry is violated. There is an ongoing worldwide campaign to search for the neutrinoless double-beta decay of various nuclei.

A new source of mass

In the third category, there is a source of mass different from the vacuum value of the Higgs field, and the neutrino masses are an amalgam of the vacuum value of the Higgs field and this new source of mass. A very low new mass scale might be discovered in oscillation experiments, while consequences of heavier ones may be detected in other types of particle-physics experiments, including measurements of beta and meson decays, charged-lepton properties, or the hunt for new particles at high-energy colliders. Searches for neutrinoless double-beta decay can reveal different sources for lepton-number violation, while ultraheavy particles can leave indelible footprints in the structure of the universe through cosmic collisions. The new physics responsible for nonzero neutrino masses might also be related to grand-unified theories or the origin of the matter–antimatter asymmetry of the universe, through a process referred to as leptogenesis. The range of possibilities spans 22 orders of magnitude (see “eV to ZeV” figure).

Challenging scenarios

Since the origin of the neutrino masses here is qualitatively different from that of all other particles, the values of the neutrino masses are expected to be qualitatively different. Experimentally, we know that neutrino masses are much smaller than all charged- fermion masses, so many physicists believe that the tiny neutrino masses are strong indirect evidence for a source of mass beyond the vacuum value of the Higgs field. In most of these scenarios, the neutrinos are also massive Majorana fermions. The challenge here is that if a new mass scale exists in fundamental physics, we know close to nothing about it. It could be within direct reach of particle-physics experiments, or it could be astronomically high, perhaps as large as 1012 times the vacuum value of the SM’s Higgs field.

Searching for neutrinoless double-beta decay is the most promising avenue to reveal whether neutrinos are Majorana or Dirac fermions

How do we hope to learn more? We need more experimental input. There are many outstanding questions that can only be answered with oscillation experiments. These could provide evidence for new neutrino-like particles or new neutrino interactions and properties. Meanwhile, searching for neutrinoless double-beta decay is the most promising avenue to experimentally reveal whether neutrinos are Majorana or Dirac fermions. Other activities include high-energy collider searches for new Higgs bosons that like to talk to neutrinos and new heavy neutrino-like particles that could be related to the mechanism of neutrino mass generation. Charged-lepton probes, including measurements of the anomalous magnetic moment of muons and searches for lepton-flavour violation, may provide invaluable clues, while surveys of the cosmic microwave background and the distribution of galaxies could also reveal footprints of the neutrino masses in the structure of the universe.

We still know very little about the new physics uncovered by neutrino oscillations. Only a diverse experimental programme will reveal the nature of the new physics behind the neutrino mass puzzle.

Boosting physics with precision and intensity

The Physics Beyond Colliders (PBC) initiative has diversified the landscape of experiments at CERN by supporting smaller experiments and showcasing their capabilities. Its fifth annual workshop convened around 175 physicists from 25 to 27 March to provide updates on the ongoing projects and to explore new proposals to tackle the open questions of the Standard Model and beyond.

This year, the PBC initiative has significantly strengthened CERN’s dark-sector searches, explained Mike Lamont and Joachim Mnich, directors for accelerators and technology, and research and computing, respectively. In particular, the newly approved SHiP proton beam-dump experiment (see SHiP to chart hidden sector) will complement the searches for light dark-sector particles that are presently conducted with NA64’s versatile setup, which is suitable for electron, positron, muon and hadron beams.

First-phase success

The FASER and SND experiments, now taking data in the LHC tunnel, are two of the successes of the PBC initiative’s first phase. Both search for new physics and study high-energy neutrinos along the LHC collision axis. FASER’s successor, FASER2, promises a 10,000-fold increase in sensitivity to beyond-the-Standard Model physics, said Jonathan Feng (UC Irvine). With the potential to detect thousands of TeV-scale neutrinos a day, it could also measure parton distribution functions and thereby enhance the physics reach of the high-luminosity LHC (HL-LHC). FASER2 may form part of the proposed Forward Physics Facility, set to be located 620 m away, along a tangent from the HL-LHC’s interaction point 1. A report on the facility’s technical infrastructure is scheduled for mid-2024, with a letter of intent foreseen in early 2025. By contrast, the CODEX-b and ANUBIS experiments are being designed to search for feebly interacting particles transverse to LHCb and ATLAS, respectively. In all these endeavours, the Feebly Interacting Particle Physics Centre will act as a hub for exchanges between experiment and theory.

Francesco Terranova (Milano-Bicocca) and Marc Andre Jebramcik (CERN) explained how ENUBET and NuTAG have been combined to optimise a “tagged” neutrino beam for cross-section measurements, where the neutrino flavour is known by studying the decay process of its parent hadron. In the realm of quantum chromodynamics, SPS experiments with lead ions (the new NA60+ experiment) and light ions (NA61/SHINE) are aiming to decode the phases of nuclear matter in the non-perturbative regime. Meanwhile, AMBER is proposing to determine the charge radii of kaons and pions, and to perform meson spectroscopy, in particularwith kaons.

The LHCspin collaboration presented a plan to open a new frontier of spin physics at the LHC building upon the successful operation of the SMOG2 gas cell that is upstream of the LHCb detector. Studying collective phenomena at the LHC in this way could probe the structure of the nucleon in a so-far little-explored kinematic domain and make use of new probes such as charm mesons, said Pasquale Di Nezza (INFN Frascati).

Measuring moments

The TWOCRYST collaboration aims to demonstrate the feasibility and the performance of a possible fixed-target experiment in the LHC to measure the electric and magnetic dipole moments (EDMs and MDMs) of charmed baryons, offering a complementary probe of searches for CP violation in the Standard Model. The technique would use two bent crystals: the first to deflect protons from the beam halo onto a target, with the resulting charm baryons then deflected by the second (precession) crystal onto a detector such as LHCb, while at the same time causing their spins to precess in the strong electric and magnetic fields of the deformed crystal lattice, explained Pascal Hermes (CERN).

New ideas ranged from the measurement of molecular electric dipole moments at ISOLDE to measuring the gravitational field of the LHC beam

Several projects to detect axion-like particles were discussed, including a dedicated superconducting cavity for heterodyne detection being jointly developed by PBC and CERN’s Quantum Technology Initiative. Atom interferometry is another subject of common interest, with PBC demonstrating the technical feasibility of installing an atom interferometer with a baseline of 100 m in one of the LHC’s access shafts. Other new ideas ranged from the measurement of molecular EDMs at ISOLDE to measuring the gravitational field of the LHC beam.

With the continued determination to fully exploit the scientific potential of the CERN accelerator complex and infrastructure for projects that are complementary to high-energy-frontier colliders testified by many fruitful discussions, the annual meeting concluded as a resounding success. The PBC community ended the workshop by thanking co-founder Claude Vallée (CPPM Marseille), who retired as a PBC convener after almost a decade of integral work, and welcomed Gunar Schnell (Ikerbasque and UPV/EHU Bilbao), who will take over as convener.

Ultra-peripheral conference debuts in Mexico

Ultra-peripheral collisions (UPCs) involving heavy ions and protons represent the energy frontier for photon-induced reactions. These high-energy photons can be used to study unique features of quarks and gluons inside nuclei, and can probe electromagnetic and electroweak interactions without the usual backgrounds associated with quantum-chromodynamic processes. The first edition of the international workshop on this subject took place from 10 to 15 December 2023 in Playa del Carmen, Mexico, bringing together about 90 participants, more than a third of whom were early-career researchers. This is the first time that the international UPC community has gathered together, establishing a new international conference series on this active and expanding area of research.

The conference highlighted the impressive progress and diversity of UPC physics, which goes far beyond the initial studies of exclusive pro­-cesses. UPC23 covered the latest results from experiments at RHIC and the LHC, and prospects for the future Electron-Ion Collider (EIC) at Brookhaven National Laboratory. Discussions delved into the intricacies of inelastic photo-nuclear events, including the exciting programme of open charm that is yet to be explored, and examined how UPCs serve as a novel lens for investigating the quark–gluon plasma and other final-state nuclear effects. Lots of attention was devoted to the physics of low-x parton densities – a fundamental aspect of protons and nuclei that photons can probe in a unique way.

Enriched understanding

Among the conference’s theoretical highlights, Farid Salazar (UCLA) showed how vector–meson photoproduction could be a powerful method to detect gluon saturation across different collision systems, from proton–nucleus to electron–nucleus to UPCs. Zaki Panjsheeri (Virginia) put forth innovative ideas to study double-parton correlations, linking UPC vector–meson studies to generalised parton distributions, enhancing our understanding of the proton’s structure. Ashik Ikbal (Kent State), meanwhile, introduced exciting proposals to investigate quantum entanglement through exclusive J/ψ photoproduction at RHIC.

The conference also provided a platform for discussing the active exploration of light-by-light scattering and two-photon processes for probing fundamental physics and searches for axion-like particles, and for putting constraints on the anomalous magnetic moment of the tau lepton (see CMS closes in on tau g–2).

Energy exploration

Physicists at the LHC have effectively repurposed the world’s most powerful particle accelerator into a high-energy photon collider. This innovative approach, traditionally the domain of electron beams in colliders like LEP and HERA, and anticipated at the EIC, allows the LHC to explore photon-induced interactions at energies never before achieved. David Grund (Czech Technical University in Prague), Georgios Krintiras (Kansas) and Cesar Luiz Da Silva (Los Alamos) shared the latest LHC findings on the energy dependence of UPC J/ψ events. These results are crucial for understanding the onset of gluon saturation – a state where gluons become so dense reaching saturation, the dynamical equilibrium where the emission and recombination occurs. However, the data also align with the nuclear phenomenon known as gluon shadowing, which arises from multiple-scattering processes. David Tlusty (Creighton) presented the latest findings from the STAR Collaboration, which has recently expanded its UPC programme, complementing the energy exploration at the LHC. Klaudia Maj (AGH University of Krakow) presented the latest results on two-photon interactions and photonuclear jets from the ATLAS collaboration, including measurements that may be probing the quark-gluon plasma. 

Delegates discussed the future opportunities for UPC physics with the large integrated luminosity expected for Runs 3 and 4 at the LHC

Carlos Bertulani (Texas A&M) paid tribute to Gerhard Baur, who passed away on June 16 last year. Bertulani and Baur co-authored “Electromagnetic processes in relativistic heavy ion collisions” – a seminal paper with more than 1000 citations. Bertulani invited delegates to consider the untapped potential of UPCs in the study of anti-atoms and exotic atoms.

Delegates also discussed the future opportunities for UPC physics with the large integrated luminosity expected for Run 3 and Run 4 at the LHC, with the planned detector upgrades for Run 4 such as FoCal, the recent upgrades by STAR, the sPHENIX programme and at the EIC. Delegates are expecting event selection and instrumentation close to the beam line, for example using “zero degree” calorimeters, to offer the greatest experimental opportunities in the coming years.

The next edition of the UPC conference will take place in Saariselka, Finland in June 2025.

Slim, charming protons on the menu in Mainz

The triennial international conference on meson–nucleon physics and the structure of the nucleon (MENU) attracted more than 140 participants to the historic centre of Mainz from 16 to 20 October 2023.

Among MENU 2023’s highlights on nucleon structure, a preliminary analysis by the NNPDF collaboration suggests that the proton contains more charm than anticharm, with Niccolò Laurenti (Università degli Studi di Milano) showing evidence of a non-vanishing intrinsic valence charm contribution to the proton’s wavefunction. Meanwhile, Michael Kohl (Hampton University) concluded that the proton–radius puzzle is still not resolved. To make progress, form-factor measurements in electron scattering must be scrutinised, and the use of atomic spectroscopy data clarified, he said.

Hadron physics

A large part of this year’s conference was dedicated to hadron spectroscopy, with updates from Belle II, BESIII, GlueX, Jefferson Lab, JPAC, KLOE/KLOE-2 and LHCb, as well as theoretical overviews covering everything from lattice quantum chromodynamics to effective-field theories. Special emphasis was also given to future directions in hadron physics at future facilities such as FAIR, the Electron-Ion Collider and the local Mainz Energy-Recovering Superconducting Accelerator (MESA) facility – a future low-energy but high-intensity electron accelerator that will make it possible to carry out experiments in nuclear astrophysics, dark-sector searches and tests of the SM. Among upgrade plans at Jefferson Lab, Eric Voutier (Paris-Saclay) presented a future experimental programme with positron beams at CEBAF, the institute’s Continuous Electron Beam Accelerator Facility. The upgrade will allow for a rich physics programme covering two-photon exchange, generalised polarisabilities, generalised parton distribution functions and direct dark-matter searches.

Highlights on nucleon structure include a preliminary analysis suggesting that the proton contains more charm than anticharm

Hadron physics is also closely related to searches for new physics, as precision observables of the Standard Model are in many cases limited by the non-perturbative regime of quantum chromodynamics. A prime example is the physics of the anomalous magnetic moment of the muon, for which a puzzling discrepancy between data-driven dispersive and lattice–quantum chromodynamics calculations of hadronic contributions to the Standard Model prediction persists (CERN Courier May/June 2021 p25). The upcoming collaboration meeting of the Muon g-2 Theory Initiative in September 2024 at KEK will provide important new insights from lattice QCD and e+e experiments. It remains to be seen whether the eventual theoretical consensus will confirm a significant deviation from the experimental value, which is currently being updated by Fermilab’s Muon g-2 experiment using their last three years of data.

BESIII passes milestone at the charm threshold

The BESIII collaboration has marked a significant milestone: the completion of its 15-year campaign to collect 20 fb–1 of e+e collision data at the ψ(3770) resonance. The sample, collected in two main running periods, 2010–2011 and 2022–2024, is more than 20 times larger than the world’s previous charm-threshold data set collected by the CLEO-c experiment in the US.

BESIII is an experiment situated on the BEPCII storage ring at IHEP in Beijing. It involves more than 600 physicists drawn not only from China but also other nations, including Germany, Italy, Poland, the Netherlands, Sweden and the UK from the CERN member states. The detector has collected data at a range of running points with centre-of-mass energies from 1.8 to 4.95 GeV, most of which are inaccessible to other operating colliders. This energy regime allows researchers to make largely unique studies of physics above and below the charm threshold, and has led to important discoveries and measurements in light-meson spectroscopy, non-perturbative QCD, and charm and tau physics.

The ψ(3770), discovered at SLAC in 1977, is the lightest charmonium state above the open-charm threshold. Charmonium consists of a bound charm quark and anti-charm quark, whereas open-charm states such as D0 and D+ mesons are systems in which the charm quark co-exists with a different anti-quark. The ψ(3770) can decay into D and anti-D mesons, whereas charmonium states below threshold, such as the J/ψ, are too light to do so, and must instead decay through annihilation of the charm and anticharm quarks.

The sample is more than 20 times larger than the worlds previous charm-threshold data set

Open-charm mesons are also produced in copious quantities at the LHC and at Belle II. However, in ψ(3770) decays at BESIII they are produced in pairs, with no accompanying particles. This makes the BESIII sample a uniquely clean laboratory in which to study the properties of D mesons. If one meson is reconstructed, or tagged, in a known charm decay, the other meson in the event can be analysed in an unbiased manner. When reconstructed in a decay of interest, the unbiased sample of mesons can be used to measure absolute branching fractions and the relative phases between any intermediate resonances in the D decay.

“Both sets of information are not only interesting in themselves, but also vital for studies with charm and beauty mesons at LHCb and Belle II,” explains Guy Wilkinson of the University of Oxford. “For example, measurements of phase information performed by BESIII with the first tranche of ψ(3770) data have been essential input in the world-leading determination of the CP-violating angle γ of the unitarity triangle by LHCb in events where a beauty meson decays into a D meson and an accompanying kaon.” Exploitation of the full 20 fb–1 sample will be essential in helping LHCb and Belle II realise their full potential in CP-violation measurements with larger data sets in the future, he adds. “Hence BESIII is very complementary to the higher energy experiments, demonstrating the strong synergies that exist between particle-physics facilities worldwide.”

This summer, BEPCII will undergo an upgrade that will increase its luminosity. Over the rest of the decade more data will be taken above and below the charm threshold. In the longer term, there are plans, elsewhere in China, for a Super Tau Charm Facility – an accelerator that would build on the BEPCII and BESIII programme with datasets that are two orders of magnitude larger.

First DESI results shine a light on Hubble tension

The expansion of the universe has been a well-established fact of physics for almost a century. By the turn of the millennium the rate of this expansion, referred to as the Hubble constant (H0), had converged to a value of around 70 km s–1 Mpc–1. However, more recent measurements have given rise to a tension: whereas those derived from the cosmic microwave background (CMB) cluster around a value of 67 km s–1 Mpc–1, direct measurements using a local distance-ladder (such as those based on Cepheids) mostly prefer larger values around 73 km s–1 Mpc–1. This disagreement between early- and late-universe measurements, respectively, stands at the 4–5σ level, thereby calling for novel measurements.

One such source of new information are large galaxy surveys, such as the one currently being performed by the Dark Energy Spectroscopic Instrument (DESI). This Arizona-based instrument uses 5000 individual robots that optimise the focal plane of the detector to allow it to measure 5000 galaxies at the same time. The goal of the survey is to provide a detailed 3D map, which can be used to study the evolution of the universe by focussing on the distance between galaxies. During its first year of observation, the results of which have now been released, DESI has provided a catalogue of millions of objects.

Primordial imprints

Small fluctuations in the density of the early universe resulted not only in signatures in the CMB, as measured for example by the Planck probe, but also left imprints in the distribution of baryonic matter. Each over-dense region is thought to contain dark matter, baryonic matter and photons. The gravitational force from dark matter on the baryons is countered by radiation pressure from the photons. From the small over-densities, baryons are dragged along by photon pressure until these two types of particles decoupled during the recombination era. The original location of the over-density is surrounded by a sphere of baryonic matter, which typically is at a distance referred to as the sound horizon. The sound horizon at the moment of decoupling, denoted rd, leaves an imprint that has since evolved to produce the density fluctuations in the universe that seeded large-scale structures.

Constraints on the Hubble constant assuming the flat ΛCDM model

This imprint, and how it has evolved over the last 13 billion years, depends on a number of parameters in the standard ΛCDM model of cosmology. Measuring the baryon distribution therefore allows many of the ΛCDM parameters to be constrained. Since the DESI data measure the combination of H0 and rd, a direct measurement of H0 is not possible. However, by using additional data for the sound horizon, taken from CMB measurements and Big Bang nucleosynthesis theory, the team finds values of H0 that cluster around 67.5 km s–1 Mpc–1 (see “Hubble tension” figure). This is consistent with early-universe measurements and differs by more than 3σ from late-universe measurements.

Although these new results do not directly resolve the Hubble tension, they do hint at one potential solution: the need to revise the ΛCDM model. The measurements also allow constraints to be placed on the acceleration of the universe, which depends on the dark-energy equation of state, w. While this is naturally assumed to be constant at w = –1, the DESI first-year results better match a time-evolving equation of state. Although highly dependent on the analysis, the DESI data so far provide results that differ from ΛCDM predictions by more than 2.5σ. The data from the remaining four years of the survey are therefore highly anticipated as these will show whether a change to the standard cosmological model is required.

7th Workshop for Energy for Sustainable Science at Research Infrastructures

Event description

In the current decade, after contrasted indications of dwindling and instable energy resources, energy cost rises and severe evidences of climate change, the sustainability of technical infrastructures has been confirmed as an unavoidable demand. New medium and large dimension research infrastructures are forced to face this challenging scenario.

Extreme performance operation and cutting-edge technologies often lead to high power consumption. The development of next generation research and technological infrastructures and the upgrade of existing ones demand new concepts in terms of sustainability, affecting both to new technological concepts and reconsidering the operation of the facilities.

Besides, the clear increase of carbon-free, renewable energy sources, energy-efficient systems, more advanced energy storage integration and smart grids can reduce strain on the energy supply. But this cannot be an excuse for delaying the transition to sustainable infrastructures. In this regard, collaboration among scientists, engineers, environmental experts and scientific policy makers is crucial for devising long-term strategies for sustainable research infrastructure.

Sustainable development and operation of research infrastructures does not limit to energy efficiency considerations; it also encompasses circular economy concepts and a proper life cycle of materials and components, concluding with a responsible management of wastes. Embracing transformative changes towards sustainability means progress and innovation. Research facilities must take a leading position in environmental consciousness and the pursuit of efficient energy solutions, inspiring other sectors.

Renewable energy sources offer hope for a greener future, including solar, wind, and geothermal technologies. Energy-efficient systems and smart grids can mitigate power demand and reduce strain on traditional energy grids. Integrating energy storage and management systems is essential for a stable power supply.

The main goal of this event is to identify the challenges, technical and strategical, to develop and implement sustainable solutions at research infrastructures. This includes sharing experiences on new energy-efficient technologies, energy management at research infrastructures, review how the energy sustainability is faced on the current research projects, analyze life cycle, and discuss about future aims and trends, among other topics. Specific interest will be paid to involve pre-doctoral students into the workshop discussions, to promote the involvement of the young research staff on the event topics.

To stimulate exchanges and foster contacts and cooperation among the participants, the format of the event has been selected to be in-presence, although speakers from non European institutions will be exceptionally allowed to participate on-line.

CIEMAT, in collaboration with CERN (the European Organization for Nuclear Research), the ESRF (European Synchrotron Radiation Facility), DESY (Deutsches Elektronen-Synchrotron), PSI (the Paul Scherrer Institut), ESS (The European Spallation Source) and ERF (The European Association of National Research Facilities) will host the Seventh Workshop on Energy for Sustainable Science at Research Infrastructures Facilities in Madrid on 25-27 November 2024, as a continuation of a series of events hosted by ESS (2011), CERN (2013), DESY (2015), ELI-NP (2017), PSI (2019) and ESRF (2022).

bright-rec iop pub iop-science physcis connect