Topics

A pevatron at the galactic centre

16 September 2024
Best-fit HAWC spectral energy distribution

The measured all-particle energy spectrum for cosmic rays (CRs) is famously described by a steeply falling power law. The spectrum is almost featureless from energies of around 30 GeV to 3 PeV, where a break (also known as the “knee”) is encountered, after which the spectrum becomes steeper. It is believed that CRs with energies below the knee have galactic origins. This is supported by the observation of diffuse gamma rays from the galactic disk in the GeV range (a predominant mechanism for the production of gamma rays is via the decay of neutral pions created when relativistic protons interact with the ambient gas). The knee could be explained by either the maximum energy that galactic sources can accelerate CR particles to, or the escape of CR particles from the galaxy if they are energetic enough to overcome the confinement of galactic magnetic fields. Both scenarios, however, assume the presence of astrophysical sources within the galaxy that could accelerate CR particles up to PeV energies. For decades, scientists have therefore been on the hunt for such sources, reasonably called “pevatrons”.

Recently, researchers at the High-Altitude Water Cherenkov (HAWC) observatory in Mexico reported the observation of ultra-high energy (> 100 TeV) gamma rays from the central region of the galaxy. Using nearly seven years of data, the team found that a point source, HAWC J1746-2856, with a simple power-law spectrum and no signs of a cutoff from 6 to 114 TeV best describes the observed gamma-ray flux. A total of 98 events were observed at energies above 100 TeV.

To analyse the spatial distribution of the observed gamma rays, the researchers plotted a significance map of the galactic centre. On this map, they also plotted the point-like supernova remnant SNR G0.9+0.1 and an unidentified extended source HESS J1745-303, both located 1° away from the galactic centre. While supernova remnants have long been a favoured candidate for galactic pevatrons, HAWC did not observe any excess at either of these source positions. There are, however, two other interesting point sources in this region: Sgr A* (HESS J1745-290), the supermassive black hole in the galactic centre; and HESS J1746-285, an unidentified source that is spatially coincident with the galactic radio arc. Imaging atmospheric Cherenkov telescopes such as HESS, VERITAS and MAGIC have measured the gamma-ray emissions from these sources up to an energy of about 20 TeV, but HAWC has an angular resolution about six times larger at such energies and therefore cannot resolve them.

To eliminate the contamination to the flux from these sources, the authors assumed that their spectra cover the full HAWC energy range and then estimated the event count by convolving the reported best-fit model from HESS with the instrument-response functions of HAWC. The resulting HAWC spectral energy distribution, after subtracting these sources (see figure), seems to be compatible with the diffuse emission data points from HESS while still maintaining a power-law behaviour, with no signs of a cutoff and extending up to at least 114 TeV. This is the first detection of gamma rays at energies > 100 TeV from the galactic centre, thereby providing convincing evidence of the presence of a pevatron.

This is the first detection of gamma rays at energies > 100 TeV from the galactic centre

Furthermore, the diffuse emission is spatially correlated with the morphology of the central molecular zone (CMZ) – a region in the innermost 500 pc of the galaxy consisting of enormous molecular clouds corresponding to around 60 million solar masses. Such a correlation supports a hadronic scenario for the origin of cosmic rays, where gamma rays are produced via the interaction of relativistic protons with the ambient gas. In the leptonic scenario, electrons with energies above 100 TeV produce gamma rays via inverse Compton scattering, but such electrons suffer severe radiative losses; for a magnetic field strength of 100 μG, the maximum distance that such electrons can traverse is much smaller than the CMZ. On the other hand, in the hadronic case the escape time for protons is orders of magnitude shorter than the cooling time (via π0 decay). The stronger magnetic field could confine them for a longer period but, as the authors argue, the escape time is also much smaller than the age of the galaxy, thereby pointing to a young source that is quasi-continuously injecting and accelerating protons into the CMZ.

The study also computes the energy density of cosmic-ray protons with energies above 100 TeV to be 8.1 × 10–3eV/cm3. This is higher than the 1 × 10–3eV/cm3 local measurement from the Alpha Magnetic Spectrometer in 2015, indicating the presence of newly accelerated protons in the energy range 0.1–1 PeV. The capabilities of this study did not extend to the identification of the source, but with better modelling of the CMZ in the future, and improved performances of upcoming observatories such as CTAO and SWGO, candidate sites in the galactic centre are expected to be probed with much higher resolution.

Further reading

A Albert et al. 2024 arXiv:2407.03682.

bright-rec iop pub iop-science physcis connect