The simplest possible interaction in nature is when three identical particle lines, with the same quantum numbers, meet at a single vertex. The Higgs boson is the only known elementary particle that can exhibit such behaviour. More importantly, the strength of the coupling between three or even four Higgs bosons will reveal the first picture of the shape of the Brout–Englert–Higgs potential, responsible for the evolution of the universe in its first moments as well as possibly its fate.
Since the discovery of the Higgs boson at the LHC in 2012, the ATLAS and CMS collaborations have measured its properties and interactions with increasing precision. This includes its couplings to the gauge bosons and to third-generation fermions, its production cross sections, mass and width. So far, the boson appears as the Standard Model (SM) says it should. But the picture is still fuzzy, and many more measurements are needed. After all, the Higgs boson may interact with new particles suggested by theories beyond the SM to shed light on mysteries including the nature of the electroweak phase transition.
Line of attack
“The Higgs self-coupling is the next big thing since the Higgs discovery, and di-Higgs production is our main line of attack,” says Jana Schaarschmidt of ATLAS. “The experiments are making tremendous progress towards measuring Higgs-boson pair production at the LHC – far more than was imagined would be possible 12 years ago – thanks to improvements in analysis techniques and machine learning in particular.”
The dominant process for di-Higgs production at the LHC, gluon–gluon fusion, proceeds via a box or triangle diagram, the latter offering access to the trilinear Higgs coupling constant λ (see figure). Destructive interference between the two processes makes di-Higgs production extremely rare, with a cross section at the LHC about 1000 times smaller than that for single-Higgs production. Many different decay channels are available to ATLAS and CMS. Those with a high probability to occur are chosen if they can also provide a clean way to be distinguished from backgrounds. The most sensitive channels are those with one Higgs boson decaying to a b-quark pair and the other decaying either to a pair of photons, τ leptons or b quarks.
During this year’s Rencontres de Moriond, ATLAS presented new results in the HH → bbbb and HH → multileptons channels and CMS in the HH → γγττ channel. In May, ATLAS released a combination of searches for HH production in five channels using the complete LHC Run 2 dataset. The combination provides the best expected sensitivities to HH production (excluding values more than 2.4 times the SM prediction) and to the Higgs boson self-coupling. A combination of HH searches published by CMS in 2022 obtains a similar sensitivity to the di-Higgs cross-section limits. “In late 2023 we put out a preliminary result combining single-Higgs and di-Higgs analyses to constrain the Higgs self-coupling, and further work on combining all the latest analyses is ongoing,” explains Nadjieh Jafari of CMS.
The Higgs self-coupling is the next big thing since the Higgs discovery
Considerable improvements are expected with the LHC Run 3 and much larger High-Luminosity LHC (HL-LHC) datasets. Based on extrapolations of early subsets of its Run 2 analyses, ATLAS expects to detect SM di-Higgs production with a significance of 3.2σ (4.6σ) with (without) systematic uncertainties by the end of the HL-LHC era. With similar progress at CMS, a di-Higgs observation is expected to be possible at the HL-LHC even with current analysis techniques, along with improved knowledge of λ. ATLAS, for example, expects to be able to constrain λ to be between 0.5 and 1.6 times the SM expectation at the level of 1σ.
Testing the foundations
Physicists are also starting to place limits on possible new-physics contributions to HH production, which can originate either from loop corrections involving new particles or from non-standard couplings between the Higgs boson and other SM particles. Several theories beyond the SM, including two-Higgs-doublet and composite-Higgs models, also predict the existence of heavy scalar particles that can decay resonantly into a pair of Higgs bosons. “Large anomalous values of λ are already excluded, and the window of possible values continues to shrink towards the SM as the sensitivity grows,” says Schaarschmidt. “Furthermore, in recent di-Higgs analyses ATLAS and CMS have been able to establish a strong constraint on the coupling between two Higgs bosons and two vector bosons.”
For Christophe Grojean of the DESY theory group, the principal interest in di-Higgs production is to test the foundations of quantum field theory: “The basic principles of the SM are telling us that the way the Higgs boson interacts with itself is mostly dictated by its expectation value (linked to the Fermi constant, i.e. the muon and neutron lifetimes) and its mass. Verifying this prediction experimentally is therefore of prime importance.”
Further reading
ATLAS Collab. 2024 arXiv:2405.20040.
CMS Collab. 2023 CMS-PAS-HIG-23-006.