Supernova remnants (SNRs) are excellent candidates for the production of galactic cosmic rays. Still, as we approach the “knee” region in the cosmic-ray spectrum (in the few-PeV regime), other astrophysical sources may contribute. A recent study by the High Energy Stereoscopic System (H.E.S.S.) observatory in Namibia sheds light on one such source, called SS 433, a microquasar located nearly 18,000 light-years away. It is a binary system formed by a compact object, such as a neutron star or a stellar-mass black hole, and a companion star, where the former is continuously accreting matter from the latter and emitting relativistic jets perpendicular to the accretion plane.
The jets of SS 433 are oriented perpendicular to our line of sight and constantly distort the SNR shell (called W50, or the Manatee Nebula) that was created during the black-hole formation. Radio observations reveal the precessing motion of the jets up to 0.3 light-years from the black hole, disappearing thereafter. At approximately 81 light-years from the black hole, they reappear as collimated large-scale structures in the X- and gamma-ray bands, termed “outer jets”. These jets are a fascinating probe into particle-acceleration sites, as interactions between jets and their environments can lead to the acceleration of particles that produce gamma rays.
Excellent resolution
The H.E.S.S. collaboration collected and analysed more than 200 hours of data from SS 433 to investigate the acceleration and propagation of electrons in its outer jets. Being an imaging air–shower Cherenkov telescope, H.E.S.S. offers excellent energy and angular resolutions. The gamma-ray image showed two emission regions along the outer jets, which overlap with previously observed X-ray sources. To study the energy dependence of the emission, the full energy range was split into three parts, indicating that the highest energy emission is concentrated closer to the central source, i.e. at the base of the outer jets. A proposed explanation for the observations is that electrons are accelerated to TeV energies, generate high-energy gamma rays via inverse Compton scattering, and subsequently lose energy as they propagate outwards to generate the observed X-rays.
Monte Carlo simulations modelled the morphology of the gamma-ray emission and revealed a significant deceleration in the velocity of the outer jets at their bases, indicating a possible shock region. With a lower limit on the cut-off energy for electron injection into this region, the acceleration energies were found to be > 200 TeV at 68% confidence level. Additionally, protons and heavier nuclei can also be accelerated in these regions and reach much higher energies as they are affected by weaker energy losses and carry higher total energy than electrons.
These jets are a fascinating probe into particle-acceleration sites
SS 433 is, unfortunately, ruled out as a contributor to the observed cosmic-ray flux on Earth. Considering the age of the system to be 30,000 years and proton energies of 1 PeV, the distance traversed by a cosmic-ray particle is much smaller than even the lowest estimates for the distance to SS 433. Even with a significantly larger galactic diffusion coefficient or an age 40 times older, it remains incompatible with other measurements and the highest estimate on the age of the nebula. While proton acceleration does occur in the outer jets of SS 433, these particles don’t play a part in the cosmic-ray flux measured on Earth.
This study, by revealing the energy-dependent morphology of a galactic microquasar and constraining jet velocities at large distances, firmly establishes shocks in microquasar jets as potent particle-acceleration sites and offers valuable insights for future modelling of these astrophysical structures. It opens up exciting possibilities in the search for galactic cosmic-ray sources at PeV energies and extragalactic ones at EeV energies.
Further reading
H.E.S.S Collab. 2024 Science 383 402.