Comsol -leaderboard other pages

Topics

The LHC gears up for season 2

With the end of the long shutdown in sight, teams at CERN have continued preparations for the restart of the Large Hadron Collider (LHC) this spring after reaching several important milestones by the end of 2014. Beams came knocking at the LHC’s door for the first time on 22–23 November, when protons from the Super Proton Synchrotron passed into the two LHC injection lines and were stopped by beam dumps just short of entering the accelerator. The LHC operations team used these tests to check the control systems, beam instrumentation and transfer-line alignment. Secondary particles – primarily muons – generated during the dump were in turn used to calibrate the two LHC experiments located close to the transfer lines: ALICE and LHCb.

During the same weekend, the operations team also carried out direct tests of LHC equipment. They looked at the timing synchronization between the beam and the LHC injection and extraction systems by pulsing the injection kicker magnets and triggering the beam-dump system in point 6, despite having no beam.

Tests of each of the eight LHC sectors continued apace. By the end of November, copper-stabilizer continuity measurements were underway in sector 4-5 and were about to start in sector 3-4. Electrical quality assurance tests were being carried out in sectors 2-3 and 7-8, and powering tests were progressing in sectors 8-1, 1-2, 5-6 and 6-7. Cooling and ventilation teams were also busy carrying out maintenance of the systems at points around the LHC ring.

Meanwhile, the operations team were training the magnets in sector 6-7. The first training quench was performed on 31 October, reaching a current of around 10,000 A, which corresponds to a magnetic field of 6.9 T and a proton beam energy of 5.8 TeV (during Run 1, the LHC ran with proton energies of up to 4 TeV). On 9 December, the team successfully commissioned sector 6-7 to the nominal energy for Run 2 – 6.5 TeV, for proton collisions at 13 TeV. The 154 superconducting dipole magnets that make up this sector were powered to around 11,000 A. This increase in nominal energy was possible thanks to the long shutdown, which began in February 2013 and allowed the consolidation of 1700 magnet interconnections, including more than 10,000 superconducting splices. The magnets in all of the other sectors are undergoing similar training prior to 6.5 TeV operation.

In mid-December, the cryogenics team finished filling the arc sections of the LHC with liquid helium. This marked an important step on the road to cooling the entire accelerator to 1.9 K. During the end-of-year break, the cryogenic system was then set to stand-by, with elements such as stand-alone magnets emptied of liquid helium. These elements were to return to cryogenic conditions in January, to allow the operations team to perform more tests on the road to the LHC’s Run 2.

The four large experiments of the LHC – ALICE, ATLAS, CMS and LHCb – are also undergoing major preparatory work for Run 2, after the long shutdown during which important programmes for maintenance and improvements were achieved. They are now entering their final commissioning phase. Here, members of the ATLAS collaboration are cleaning up the inside of the ATLAS detector prior to closing the cavern in preparation for Run 2.

Pakistan to become associate member state of CERN

CCnew3_01_15th

On 19 December, CERN’s director-general, Rolf Heuer, and the chairman of the Pakistan Atomic Energy Commission, Ansar Parvez, signed in Islamabad the agreement admitting the Islamic Republic of Pakistan to associate membership of CERN, in the presence of prime minister Nawaz Sharif and diplomatic representatives of CERN member states. This followed approval by CERN Council to proceed towards associate membership for Pakistan during its 172nd session held in September 2014. The agreement is still subject to ratification by the government of Pakistan.

The Islamic Republic of Pakistan and CERN signed a co-operation agreement in 1994. The signature of several protocols followed, and Pakistan contributed to building the CMS and ATLAS experiments. Today, Pakistan contributes to the ALICE, ATLAS and CMS experiments, and operates a Tier-2 computing centre in the Worldwide LHC Computing Grid that helps to process and analyse the massive amounts of data that the experiments generate. Pakistan is also involved in accelerator developments, making it an important partner for CERN.

The associate membership of Pakistan will open a new era of co-operation that will strengthen the long-term partnership between CERN and the Pakistani scientific community. Associate membership will allow Pakistan to participate in the governance of CERN, through attending the meetings of the CERN Council. Moreover, it will allow Pakistani scientists to become CERN staff members, and to participate in CERN’s training and career-development programmes. Finally, it will allow Pakistani industry to bid for CERN contracts, therefore opening up opportunities for industrial collaboration in areas of advanced technology.

CERN-JINR reciprocal observers

During its December meeting, Council also welcomed the Joint Institute for Nuclear Research, JINR, for the first time as an observer to Council, as part of a reciprocal arrangement that also sees CERN becoming an observer at JINR. Founded as an international organization at Dubna near Moscow in 1956, JINR soon forged a close partnership with CERN that saw exchanges of personnel and equipment throughout the cold war and beyond.

LHCf detectors are back in the LHC tunnel

The Large Hadron Collider forward (LHCf) experiment measures neutral particles emitted around zero degrees of the hadron interactions at the LHC. Because these “very forward” particles carry a large fraction of the collision energy, they are important for understanding the development of atmospheric air-shower phenomena produced by high-energy cosmic rays. Two independent detectors, Arm1 and Arm2, are installed in the target neutral absorbers (TANs) at 140 m from interaction point 1 (IP1) in the LHC, where the single beam pipe is split into two narrow pipes.

After a successful physics operation in 2009/2010, the LHCf collaboration immediately removed their detectors from the tunnel in July 2010 to avoid severe radiation damage. The Arm2 detector, in the direction of IP2, came back into the tunnel for data-taking with proton–lead collisions in 2013, while Arm1 was being upgraded to be a radiation-hard detector, using Gd2SiO5 scintillators. After completion of the upgrade for both Arm1 and Arm2, the performance of the detectors was tested at the Super Proton Synchrotron fixed beam line in Prévessin in October 2014. Both Arm1 and Arm2 were then reinstalled in the LHC tunnel on 17 and 24 November, respectively.

CCnew5_01_15th

The installation went smoothly, thanks to the well-equipped remote-handling system for the TAN instrumentation. During the following days, cabling, commissioning and the geometrical survey of the detectors took place without any serious trouble.

LHCf will restart the activity to relaunch the data-acquisition system in early 2015, to be ready for the dedicated operation time in May 2015 when the LHC will provide low luminosity, low pile-up and high β* (20 m) proton–proton collisions. At √s = 13 TeV, these collisions correspond to interactions in the atmosphere of cosmic rays with energy of 0.9 × 1017 eV. This is the energy at which the origins of the cosmic rays are believed to switch from galactic to extragalactic, and a sudden change of the primary mass is expected. Cosmic-ray physicists expect to confirm this standard scenario of cosmic rays based on the highest-energy LHC data.

Another highlight of the 2015 run will be common data-taking with the ATLAS experiment. LHCf will send trigger signals to ATLAS, and ATLAS will record data after pre-scaling. Based on a preliminary Monte Carlo study using PYTHIA8, which selected events with low central activity in ATLAS, LHCf can select very pure (99%) events produced by diffractive dissociation processes. The identification of the origin of the forward particles will help future developments of hadronic-interaction models.

Narrowing down the ‘stealth stop’ gap with ATLAS

In late 2011, ATLAS launched a dedicated programme targeting searches for the supersymmetric partner of the top quark – the scalar top, or “stop” – which could be pair-produced in high-energy proton–proton collisions. If not much heavier than the top quark, this new particle is expected to play a key role in explaining why the Higgs boson is light.

While earlier supersymmetry (SUSY) searches at the LHC have already set stringent exclusion limits on strongly produced SUSY particles, these generic searches were not very sensitive to the stop. If it exists, the stop could decay in a number of ways, depending on its mass and other SUSY parameters. Most of the searches at the LHC assume that the stop decays to the lightest SUSY particle (LSP) and one or more Standard Model particles. The LSP is typically assumed to be stable and only weakly interacting, making it a viable candidate for dark matter. Events with stop-pair production would therefore feature large missing transverse momentum as the two resulting LSPs escape the detector.

The first set of results from the searches by ATLAS were presented at the International Conference on High-Energy Physics (ICHEP) in 2012. A stop with mass between around 225 and 500 GeV for a nearly massless LSP was excluded for the simplest decay mode. Exclusion limits were also set for more complex stop decays.

CCnew7_01_15th

These searches revealed a sensitivity gap when the stop is about as heavy as the top quark – a scenario that is particularly interesting and well motivated theoretically. Such a “stealth stop” hides its presence in the data, because it resembles the top quark, which is pair-produced roughly six times more abundantly.

Use of the full LHC Run-1 data set, together with the development of novel analysis techniques, has pushed the stop exclusion in all directions. The figure shows the ATLAS limits as of the ICHEP 2014 conference, in the plane of LSP mass versus stop mass for each of the following stop decays: to an on-shell top quark and the LSP (right-most area); to an off-shell top quark and the LSP (middle area); to a bottom quark, off-shell W boson, and the LSP (left-most grey area); or to a charm quark and the LSP (left-most pink area). The exclusion is achieved by the complementarity of four targeted searches (ATLAS Collaboration 2014a–2014d). The results eliminate a stop of mass between approximately 100 and 700 GeV (lower masses were excluded by data from the Large Electron–Positron collider) for a light LSP. Gaps in the excluded region for intermediate stop masses are reduced but persist, including the prominent region corresponding to the stealth stop.

Standard Model top-quark measurements can be exploited to get a different handle on the potential presence of a stealth stop. The latest ATLAS high-precision top–antitop cross-section measurement, together with a state-of-the-art theoretical prediction, has allowed ATLAS to exclude a stealth stop between the mass of the top quark and 177 GeV, for a stop decaying to a top quark and the LSP.

The measurement of the top–antitop spin correlation adds extra sensitivity because the stop and the top quark differ by half a unit in spin. The latest ATLAS measurement (ATLAS Collaboration 2014e) uses the distribution of the azimuthal angle between the two leptons from the top decays, together with cross-section information, to extend the limit for the stealth stop up to 191 GeV.

The rigorous search programme undertaken by ATLAS has ruled out large parts of interesting regions of the stop model and closed in on a stealth stop. It leaves the door open for discovery of a stop beyond the current mass reach, or in remaining sensitivity gaps, at the higher-energy and higher-luminosity LHC Run 2.

CMS measures the ‘underlying event’ in pp collisions

Ever since the earliest experiments with hadron beams, and subsequently during the era of the hadron colliders heralded by CERN’s Intersecting Storage Rings, it has been clear that hadron collisions are highly complicated processes. Indeed, initially it was far from obvious whether it would be possible to do any detailed studies of elementary particle physics with hadron collisions at all.

The question was whether the physics of “interesting” particle production could be distinguished from that of the “background” contribution in hadron collisions. While the former is typically a single parton–parton scattering process at very high transverse momentum (pT), the latter consists of the remnants of the two protons that did not participate in the hard scatter, including the products of any additional soft, multiple-parton interactions. Present in every proton–proton (pp) collision, this soft-physics component is referred to as the “underlying event”, and its understanding is a crucial factor in increasing the precision of physics measurements at high pT. Now, the CMS collaboration has released its latest analysis of the underlying event data at 2.76 TeV at the LHC.

CCnew9_01_15th

The measurement builds on experimental techniques that have been developed at Fermilab’s Tevatron and previously at the LHC to perform measurements that are sensitive to the physics of the underlying event. The main idea is to measure particle production in the region of phase space orthogonal to the high-pT process – that is, in the transverse plane. In its latest analysis of the underlying event data at 2.76 TeV, CMS has measured both the average charged-particle multiplicity as well as the pT sum for the charged particles. The scale of the hard parton–parton scattering is defined by the pT of the most energetic jet of the event.

The measurements are expected to result in more accurate simulations of pp collisions at the LHC. Because the properties of the underlying event cannot be derived from first principles in QCD, Monte Carlo generators employ phenomenological models with several free parameters that need to be “tuned” to reproduce experimental measurements such as the current one from CMS.

An important part of the studies concerns the evolution of the underlying-event properties with collision energy. CMS has therefore presented measurements at centre-of-mass energies of 0.9, 2.76 and 7 TeV. Soon, there will be new data from Run 2 at the LHC. The centre-of-mass energy of 13 TeV will necessitate further measurements, and provide an opportunity to probe the ever-present underlying event in uncharted territory.

LHCb observes two new strange-beauty baryons

The LHCb collaboration has discovered two new particles, the Ξ´b and Ξ*–b. Predicted to exist by the quark model, they are both baryons containing three quarks, in this case, b, s and d. The new particles – which thanks to the heavyweight b quarks are more than six times as massive as the proton – join the Ξb, found several years ago by the D0 and CDF experiments at Fermilab.

The three particles are differentiated by the spin, j, of the sd diquark, and the overall spin-parity, JP, of the baryon, and in turn the relative spins of the quarks affect the masses of the particles. With j = 0 and JP = ½+, the Ξb is the lightest, and so decays relatively slowly through the weak interaction, leading to its discovery at Fermilab’s Tevatron. The Ξ´b and Ξ*–b have j = 1, and JP = ½+ and JP = 3/2+, respectively, and should decay either strongly or electromagnetically, depending on their masses.

CCnew11_01_15th

LHCb analysed proton–proton collision data from the LHC corresponding to an integrated luminosity of 3.0 fb–1, to observe the new particles through their decay to Ξ0b π. A third of the data were collected at a centre-of-mass energy of 7 TeV, the remainder at 8 TeV. Signal candidates were reconstructed in the final state Ξ0b π, where the Ξ0b was identified through its decay Ξ0b → Ξ+c π, Ξ+c → p K π+.

The figure shows the distribution of δm, defined as the invariant mass of the Ξbπ pair minus the sum of the π mass and the measured Ξ0b mass. This definition means that the lightest possible mass for the Ξ0π pair – the threshold for the decay – is at δm = 0. The two peaks are clear observation of the Ξ´b(left) and Ξ*–b (right) baryons above the hatched-red histogram representing the expected background. The Ξ*–b is clearly the more unstable of the two, because its peak is wider. This is consistent with the pattern of masses: the Ξ´–bmass is just slightly above the energy threshold, so it can decay to Ξ0b π, but only just – its width is consistent with zero, with an upper limit of Γ(Ξ´b) < 0.08 MeV at 95% confidence level.

The results show the extraordinary precision of which LHCb is capable: the mass difference between the Ξ´b and the Ξ0b is measured with an uncertainty of about 0.02 MeV/c2, less than four-millionths of the Ξ0b mass. By observing these particles and measuring their properties with such accuracy, LHCb is making a stringent test of models of nonperturbative QCD. Theorists will be able to use these measurements as an anchor point for future predictions.

Profiling jets with ALICE

Scaled pT spectra of charged particles in jets for different bins of jet transverse momentum.

 

“Jets are collimated sprays of particles.” This ubiquitous characterization used in many articles in the field of jet physics has once again been confirmed by the ALICE collaboration, in a measurement of the production cross-sections, fragmentation and spatial structure of charged jets reconstructed from charged particle tracks.

Jets observed in collisions of LHC beams emerge from the violent scattering of quarks and gluons. The highly energetic scattered partons develop a parton shower via sequential gluon splittings, which fragments into the measured hadrons – the constituents of the jet. In heavy-ion collisions, jets are an important diagnostic tool for studying quark–gluon plasma (QGP) at the LHC, where effects arising from the interaction of the scattered partons with the dense produced medium are expected. Indeed, a strong suppression of jet production in lead–lead collisions is observed, along with a modification of the jet-fragment distributions.

“The interpretation of these effects requires detailed reference measurements of the jet structure and fragmentation in proton–proton collisions, where no medium is formed. In ALICE, charged jets are reconstructed in the central barrel from tracks measured with the inner tracking system and the time-projection chamber. Full jets contain neutral as well as charged particles measured with the ALICE electromagnetic calorimeter ( CERN Courier May 2013 p8), but for this recent study the analysis did not include neutral particles in the jet reconstruction. Jets with transverse momenta (pT) from 20 to 100 GeV/c can be measured and analysed particle by particle. With the detector’s excellent low-momentum tracking capabilities, ALICE is unique in being able to measure constituents down to a pT of 150 MeV/c. Measurements at low jet and constituent pT are crucial for heavy-ion collisions, where gluon radiation induced by the medium is expected to enhance the yield of soft jet particles.

Scaled pT spectra of charged particles in jets for different bins of jet transverse momentum.

 

The left-hand part of the figure shows the ratios of cross-sections for jets measured with different choices of the resolution parameter, R. Using a distance measure that combines azimuthal angle and pseudo-rapidity differences as Δr2 = Δφ2 + Δη2, the jet pT for a given R is the summed pT of the jet constituents accumulated in a cone of size R. The ratio is a measure of the jet structure, i.e. the angular distribution of jet constituents, and the observed increase of R with jet pT indicates stronger collimation for more energetic jets. The ALICE measurements show that 80% of the energy of the reconstructed jet is typically found within 15° of the jet axis.

The right-hand part of the figure shows the jet-fragmentation distribution of constituent pT in the reduced transverse-momentum variable zch = pTparticle,ch/pTjet,ch, which measures the fraction of the total charged-jet pT carried by a given jet constituent. For zch > 0.1, the distributions for different charged-jet pT are consistent with each other. This scaling is broken for the lowest zch, owing to the increase of the multiplicity of soft jet constituents with higher jet pT.

The measurement of jet properties in proton–proton collisions is the first step towards studies of the “quenched” jets in the more complex environment of heavy-ion collisions. They provide a reference for future measurements of the modification of jet fragmentation and structure in heavy-ion collisions, including studies of identified hadrons in jets using the unique particle identification capabilities of ALICE at the LHC.

Two teams take big steps forward in plasma acceleration

CCnew15_01_15th

The high electric-field gradients that can be set up in plasma have offered the promise of compact particle accelerators since the late 1970s. The basic idea is to use the space-charge separation that arises in the wake of either an intense laser pulse or a pulse of ultra-relativistic charged particles. Towards the end of 2014, groups working on both approaches reached important milestones. One team, working at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC, demonstrated plasma-wakefield acceleration with both a high gradient and a high energy-transfer efficiency – a crucial combination not previously achieved. At Lawrence Berkeley National Laboratory, a team working at the Berkeley Lab Laser Accelerator (BELLA) facility boosted electrons to the highest energies ever recorded for the laser-wakefield technique.

CCnew16_01_15th

Several years ago, a team at SLAC successfully accelerated electrons in the tail of a long electron bunch from 42 GeV to 85 GeV in less than 1 m of plasma. In that experiment, the particles leading the bunch created the wakefield to accelerate those in the tail, and the total charge accelerated was small. Since then, FACET has come on line. Using the first 2 km of the SLAC linac to deliver an electron beam of 20 GeV, the facility is designed to produce pairs of high-current bunches with a small enough separation to allow the trailing bunch to be accelerated in the plasma wakefield of the drive bunch.

Using the pairs of bunches at FACET, some of the earlier team members together with new colleagues have carried out an experiment in the so-called “blow-out” regime of plasma-wakefield acceleration, where maximum energy gains at maximum efficiencies are to be found. The team succeeded in accelerating some 74 pC of charge in the core of the trailing bunch of electrons to about 1.6 GeV per particle in a gradient of about 4.4 GeV/m (Litos et al. 2014). The final energy spread for the core particles was as low as 0.7%, and the maxiumum efficiency of energy transfer from the wake to the trailing bunch was in excess of 30%.

Meanwhile, a team at Berkeley has been successfully pursuing laser-wakefield acceleration for more than a decade. This research was boosted when the specially conceived BELLA facility recently came on line with its petawatt laser. In work published in December, the team at BELLA used laser pulses at 0.3 PW peak power to create a plasma channel in a 9-cm-long capillary discharge waveguide and accelerate electrons to the record energy of 4.2 GeV (Leemans et al. 2014). Importantly, the 16 J of laser energy used was significantly lower than in previous experiments – a result of using the preformed plasma waveguide set up by pulsing an electrical discharge through hydrogen in a capillary. The combination of increased electron-beam energy and lower laser energy bodes well for the group’s aim to reach the target of 10 GeV.

Nuclei come under the microscope in California

CCnew17_01_15th

It has long been known that, when they are put under a sufficiently energetic microscope, nuclei reveal a complicated structure – the more energetic the probe, the more complex the structure. In recent years, continuing studies of deuteron–nucleus (dA) and proton–nucleus (pA) collisions have demonstrated that many features first observed in heavy-ion (AA) collisions are also present in these lighter collisions, and some of these features have even been seen in high-multiplicity pp collisions. Such factors have generated the present intense interest in nuclear structure that was evident when more than 120 physicists gathered in California’s Napa Valley on 3–7 December, to discuss the initial state in these collisions during the 2nd International Conference on Initial Stages in High-Energy Nuclear Collisions (IS2014).

In particular, pA collisions at the LHC have demonstrated the existence of anisotropic particle production. The angular distributions look very similar to those observed in AA collisions, where the anisotropy has been attributed to hydrodynamic flow. The material produced in these collisions appears to flow like a low-viscosity fluid, and the final-state anisotropy mimics that present in the initial elliptic-shaped collision region. Recent studies at Brookhaven’s Relativisitic Heavy-Ion Collider (RHIC) as well as at the LHC have shown that, in addition to the American-football-shaped collision region, there are also event-to-event anisotropies caused by the different random positions of nucleons within the nucleus. Much of the observed anisotropy might be explained by models based on hydrodynamic flow. One focus of IS2014 was the question of how hydrodynamic flow can arise in smaller nuclear systems, particularly pA collisions. One new approach to this question is being pursued at RHIC, in which 3He collided with gold last year, to see how the triangular initial state manifests itself in the collision products (figure 2).

CCnew18_01_15th

Some of these phenomena also appear in high-multiplicity pp collisions. One example is “the ridge” observed as two-particle correlations between particles with similar azimuthal angles, but separated by large rapidities. In contrast, one other expected consequence of the quark–gluon plasma – jet quenching – appears to be present only in AA collisions, for the most part.

The meeting also covered recent theoretical developments. As the centre-of-mass energies increase, collisions probe partons with smaller and smaller momentum fractions (Bjorken-x values). And as the x-values decrease, the parton density increases, and at low enough x values, saturation must set in. This happens when gluons begin to recombine as well as to split. Although saturation is expected on general principles, the details remain the subject of spirited theoretical discussion. One key question addressed in Napa was the search for the colour-glass condensate (CGC), a hypothetical state of matter where the gluons produce coherent fields. These CGCs lead to new nuclear phenomena.

The meeting included presentations on a variety of experimental techniques. The RHIC and LHC collaborations all made presentations highlighting their data and plans for AA, pA and pp collisions. In addition to hadronic collisions, one session was devoted to ultra-peripheral collisions, where two colliding nuclei interact electromagnetically. Here, reactions such as photonuclear production of vector mesons are sensitive to details of the nuclear initial state.

The congenial atmosphere led to many fruitful discussions, and a third conference is planned in Lisbon in 2016.

• For more about IS2014, visit http://is2014.lbl.gov.

bright-rec iop pub iop-science physcis connect