Comsol -leaderboard other pages

Topics

DIRAC experiment observes new exotic atom

Inclusive πK production via the interaction p + Ni πK+ + X. The ionisation or break up of AKπ leads to so-called atomic pairs.
Image credit: arXiv:1605.06103v1.


The DIRAC (DImeson Relativistic Atom Complex) experiment at CERN has discovered a new type of exotic atom made up of a π and K meson. The “strange dimesonic” state provides an ideal laboratory for testing quantum chromodynamics (QCD) in the low-energy region and joins a long list of non-standard atoms, which also include positronium, muonic atoms and antihydrogen, that help physicists study in detail how particles interact.

The πK system is a type of hadronic atom in which meson pairs are bound electromagnetically, similar to pionium (a π+π atom), which was studied previously by the DIRAC experiment. It was produced by firing 24 GeV/c protons from CERN’s Proton Synchrotron (PS) into platinum or nickel foil targets. Here, relativistic dimesonic bound states formed by Coulomb final-state interactions move inside the target and can break up, resulting in particle pairs characterised by a small relative momentum in the centre-of-mass system of the pair. The recently upgraded DIRAC experiment observed 349±62 such atomic pairs, corresponding to a signal of 5.6σ.

The observation is part of an effort that began almost a decade ago, when the DIRAC collaboration reported a 3.2σ enhancement of πK pairs at low relative momentum based on a platinum target. This was followed in 2014 by 3.6σ evidence using a nickel target.  The latest result is based on data obtained in both platinum and nickel targets, also using information from all subdetectors and enhanced background description based on Monte Carlo simulations, and represents the first statistically significant observation of the strange dimesonic πK atom.

The team is now working towards a measurement of the πK atom lifetime, which is predicted to be 3.5±0.4 fs. This will allow DIRAC to measure for the first time a parameter of low-energy πK interactions called the scattering length. With an expected precision of around 35%, the result can then be compared with precise predictions from lattice QCD and chiral perturbation theory. The latter provides a way to predict scattering lengths in the low-energy sector of QCD and to study a potential flavour dependence of the quark condensate responsible for chiral-symmetry breaking.

“A recent study has shown that the production rate of πK atoms from the proton beam of CERN’s Super Proton Synchrotron will be 25 times higher compared to that from the PS,” explains DIRAC spokesperson Leonid Nemenov. “This will allow us to measure the πK scattering lengths with a precision better than 5% and to check the precise predictions of QCD for these values basing on a Lagrangian describing u, d and s quarks. The DIRAC collaboration is now planning to prepare the dedicated Letter of Intent for such an experiment.”

AMS reports unexpected result in antiproton data

Researchers working on the AMS (Alpha Magnetic Spectrometer) experiment, which is attached to the International Space Station, have reported precision measurements of antiprotons in primary cosmic rays at energies never before attained. Based on 3.49 × 105 antiproton events and 2.42 × 109 proton events, the AMS data represent new and unexpected observations of the properties of elementary particles in the cosmos.

Assembled at CERN and launched in May 2011, AMS is a 7.5 tonne detector module that measures the type, energy and direction of particles. The goals of AMS are to use its unique position in space to search for dark matter and antimatter, and to study the origin and propagation of charged cosmic rays: electrons, positrons, protons, antiprotons and nuclei. So far, the collaboration has published several key measurements of energetic cosmic-ray electrons, positrons, protons and helium, for example finding an excess in the positron flux (CERN Courier November 2014 p6). This latter measurement placed constraints on existing models and gave rise to new ones, including collisions of dark-matter particles, astrophysical sources and collisions of cosmic rays – some of which make specific predictions about the antiproton flux and the antiproton-to-proton flux ratio in cosmic rays.

With its latest antiproton results, AMS has now simultaneously measured all of the charged-elementary-particle cosmic-ray fluxes and flux ratios. Due to the scarcity of antiprotons in space (being outnumbered by protons by a factor 10,000), experimental data on antiprotons are limited. Using the first four years of data, AMS has now measured the antiproton flux and the antiproton-to-proton flux ratio in primary cosmic rays with unprecedented precision. The measurements, which demanded AMS provide a separation power of approximately 106, provide precise experimental information over an extended energy range in the study of elementary particles travelling through space.

The antiproton (p), proton (p), and positron (e+) fluxes are found to have nearly identical rigidity dependence

In the absolute-rigidity (the absolute value of the momentum/charge) range 60–500 GV, the antiproton (p), proton (p), and positron (e+) fluxes are found to have nearly identical rigidity dependence, while the electron (e) flux exhibits a markedly different rigidity dependence. In the absolute-rigidity range below 60 GV, the p/p, p/e+ and p/e+ flux ratios each reach a maximum, while in the range 60–500 GV these ratios unexpectedly show no rigidity dependence.

“These are precise and completely unexpected results. It is difficult to imagine why the flux of positrons, protons and antiprotons have exactly the same rigidity dependence and the electron flux is so different,” says AMS-spokesperson Samuel Ting. “AMS will be on the Space Station for its lifetime. With more statistics at higher energies, we will probe further into these mysteries.”

LHC hits 2016 luminosity target

 

At the end of August, two months ahead of schedule, the integrated luminosity delivered by the LHC reached the 2016 target value of 25 fb–1 in both the ATLAS and CMS experiments. The milestone is the result of a large group of scientists and technical experts who work behind the scenes to keep the 27 km-circumference machine operating at the highest possible performance.

Following a push to produce as many proton–proton collisions as possible before the summer conferences, several new ideas, such as a novel beam-production technique in the injectors, have been incorporated to boost the LHC performance. Thanks to these improvements, over the summer the LHC was routinely operating with peak luminosities 10%–15% above the design value of 1034 cm–2 s–1.

This is a notable success, especially considering that a temporary limitation in the Super Proton Synchrotron only allows the injection of 2220 bunches per beam instead of the foreseen 2750, and that the LHC energy is currently limited to 6.5 TeV instead of the nominal 7 TeV. The excellent availability of all the key systems of the LHC is one of the main reasons behind these achievements.

The accelerator team is now gearing up for the season finale. Following a technical stop, a forward proton–proton physics run took place in mid-September. Proton–proton physics is scheduled to continue until the last week in October, after which proton–lead physics will take over for a period of one month. The LHC and its experiments can look forward to the completion of what is already a very successful year.

Beamline competition calls all schools

CERN has announced the 4th edition of its Beamline for Schools Competition, which will see two winning teams of students undertake an experiment of their design at a fully equipped CERN beamline next year. The 2017 competition, which is made possible thanks to the Alcoa Foundation, is open to teams of high-school students aged 16 or older. A maximum of nine students per winning team will be invited to CERN, and teams can be composed of pupils from a single school or a number of schools working together.

Previous winners have tested webcams and classroom-grown crystals in the beamline, and also studied how particles decay and investigated high-energy gamma rays. Interested schools can pre-register their team to receive the latest updates, and further information about how to apply can be found at cern.ch/bl4s. The deadline for submissions is 31 March 2017.

ATLAS observes single top-quarks at 13 TeV

The neural-network discriminant for the positive lepton channel.

The ATLAS collaboration is exploiting the window of opportunity opened by the LHC’s 13 TeV run to search directly for unknown particles. Complementary to this approach, the collaboration is also looking for deviations in the cross-sections and kinematic distributions of Standard Model processes, which could be caused by energy-dependent couplings that become accessible at the higher collision energy.

Using data recorded in 2015 corresponding to an integrated luminosity of 3.2 fb–1, ATLAS has recently measured the total cross-sections of single top-quark and top-antiquark production via the t-channel exchange of virtual W bosons. This channel has exciting kinematic features such as polarised top-quarks and forward spectator jets. Compared to the dominant top-quark−top-antiquark (tt) pair-production process, however, the single-production process is experimentally more challenging due to a higher background level. Because the two major background processes are W+jets and tt pair production, the selection of candidate events requires one charged lepton, missing transverse momentum and two hadronic jets to be present (exactly one of which has to be identified to contain b hadrons).

To measure the cross-section of top-quark and top-antiquark production separately, the events are separated into two channels according to the sign of the lepton charge. ATLAS uses neural networks to exploit the kinematic differences between the signal and background processes as much as possible, thereby optimising the statistical power of the data set. Ten different kinematic variables were combined into a discriminant, which is assumed to be close to zero for background-like events and unity for signal-like events (see figure).

The cross-sections were measured to be 156±28 pb for top-quark production and 91±19 pb for top-antiquark production. These are slightly higher than expected (+15% and +12%, respectively), but still in good agreement with the predictions. The largest uncertainties are related to the Monte Carlo generators used to model the t-channel single top-quark process and the tt pair-production process, the b-jet identification efficiency and the jet energy scale. In future measurements of the single top-quark process, the focus will be on reducing the uncertainties, exploiting improved calibrations and extending studies of the Monte Carlo generators.

ALICE pinpoints J/ψ regeneration

The ALICE Collaboration has measured with improved precision the production of J/ψ mesons in collisions of lead nuclei at the highest LHC energy, confirming the role of the “regeneration mechanism” in J/ψ production.

J/ψ mesons are bound states of a charm (c) and anticharm (c) quark and they are particularly sensitive probes of the quark–gluon plasma (QGP) formed in high-energy heavy-ion collisions. The production of J/ψ mesons is suppressed in the QGP by the screening of the cc binding, which is generated by the large surrounding colour-charge density. Such suppression was observed at RHIC in the US in AuAu collisions at a collision energy of 0.2 TeV and at the CERN SPS in PbPb collisions at 17.6 GeV. Using data from LHC Run 1, ALICE also measured a suppression in PbPb collisions at 2.76 TeV. However, the value was smaller than that measured at lower collision energy (see CERN Courier March 2012 p14), which was found to be consistent with a new mechanism of J/ψ production in the QGP: regeneration by recombination of deconfined charm and anticharm quarks.

The J/ψ suppression is quantified by the nuclear modification factor (RAA), which is defined as the ratio of the yield in PbPb to that in an equivalent number of pp collisions. The J/ψ RAA measured by ALICE as a function of the average number of nucleons participating in the collision in PbPb collisions at 5.02 TeV is compared to the value at 2.76 TeV. The larger the number of participating nucleons, the more head-on and violent the collisions.

A clear decreasing trend of the RAA with increasing participating nucleons is observed for peripheral collisions, followed by a constant evolution for more central collisions (see figure). Thanks to the increased integrated luminosity delivered by the LHC, the higher collision energy and improved detection techniques, the accuracy of the new measurement is highly improved and confirms ALICE’s earlier observation. In short, at LHC energies, a J/ψ regeneration mechanism competes with the J/ψ suppression mechanism, both of which are due to the formation of the QGP.

The improved accuracy of the RAA measurement at 5.02 TeV imposes strong constraints on theoretical calculations, the uncertainties of which are now significantly larger than the experimental ones. The additional data expected to be accumulated during LHC Run 2 will further constrain the models through more differential measurements, including the J/ψ elliptic flow.

LHCb finds early surprises at Run 2

The bumper data harvest at LHC Run 2 continues for the LHCb experiment. In mid-August, the collaboration celebrated the milestone of 1 fb–1 integrated luminosity collected so far during 2016, with significantly more expected to come during the remainder of the year. This corresponds to the production of around 1012 beauty hadrons, of which the most interesting decays have been selected and recorded for offline analysis. The stupendous performance of the LHC has been central to this success. Indeed, the LHCb operations team has had to adjust trigger and offline procedures to prevent the torrent of incoming data from overflowing the experiment’s data-storage resources.

The ratio of differential cross-sections for b-hadron production with respect to pseudorapidity, η, measured at collision energies of 13 and 7 TeV. Data are compared to predictions described in Eur. Phys. J C 75 610.

With LHCb’s physics programme centred around painstaking precision measurements, the most eagerly awaited results from the Run 2 data set will not begin to appear until early next year. However, the first glimpses into the new sample are already revealing surprising results. For example, a measurement of the production cross-section of beauty hadrons at 13 TeV has shown unexpected behaviour when compared to what was observed at 7 TeV during Run 1. Although the ratio of the cross-sections at the two energies is roughly equal to two, as predicted, there is a clear dependence on pseudorapidity (which is related to the angle of production) that differs markedly from the current model expectations. The ratio in the data is significantly higher at low values of pseudorapidity, which corresponds to the more central regions of production (see figure).


This result, which was first shown at the ICHEP conference in Chicago in August, is still being digested by theorists. Although it is too early to speculate on the causes of this intriguing behaviour, and indeed the consequences for other measurements, it is hoped that many other surprises lurk in the Run-2 data set.

Probing dark matter with CMS

Understanding the nature of dark matter (DM) is the focus of extensive research at collider- and astrophysics-based experiments. The most well-known signature for DM production at the LHC is the so-called “mono-X” topology, for which events are characterised by the presence of a high-momentum object (e.g. a jet in the case of a mono-jet signature) from initial-state radiation in combination with significant missing transverse energy (ETmiss). The ETmiss signature may arise from DM particles that are stable yet electrically neutral and part of a colour-singlet, which means they will escape detection in the CMS experiment.

For a large class of DM models, however, the mediator cannot only be probed by conventional DM searches (such as the mono-X plus ETmiss analyses) but also by direct searches for the mediator. Such searches measure the mediator’s decay into Standard Model (SM) particles such as quarks, gluons and leptons. The most prominent example is the dijet-resonance search but also, depending on specific properties of the DM model considered, dilepton and diphoton searches may be relevant.

Using proton–proton collision data from the LHC collected at a centre-of-mass energy of 13 TeV, the CMS collaboration has recently updated several of its DM searches and placed stringent constraints on interesting DM parameter space (see figure 1). The limits shown in this plot are obtained by interpreting different collider searches from CMS in a simplified DM model. The model corresponds to an axial-vector mediator particle that is excited in proton–proton collisions and decays into two DM particles (figure 2, right) or SM particles (figure 2, left).

Although the absolute exclusions provided by these searches depend strongly on the chosen coupling and DM model scenario, the example of the axial-vector model illustrates that, in addition to the conventional mono-X plus ETmiss searches, dijet constraints can place significant bounds on relevant DM models and thus are an important ingredient in our quest of searching for DM at colliders.

Earth-like planet orbits our nearest star

Astronomers have found clear evidence of a planet orbiting the closest star to Earth, Proxima Centauri. The extrasolar planet is only slightly more massive than the Earth and orbits its star within the habitable zone, where the temperature would allow liquid water on its surface. The discovery represents a new milestone in the search for exoplanets that possibly harbour life.

Since the discovery of the first exoplanet in 1995, more than 3000 have been found. Most were detected either via radial velocity or transit techniques. The former relies on spectroscopic measurements of the weak back-and-forth wobbling of the star induced by the gravitational pull of the orbiting planet, while the latter method measures the slight drop in the star’s brightness due to the occultation of part of its surface when the planet passes in front of it.

Exoplanets discovered so far exhibit a diverse range of properties, with masses ranging from Earth-like values to several times the mass of Jupiter. Massive planets close to their parent star are the easiest to find: the first known exoplanet, called 51 Peg b, was a gaseous Jupiter-sized planet (a “hot Jupiter”) with a temperature of the order of 1000 °C due to its proximity to the star. The ultimate goal of exoplanet hunters is to find an Earth twin or at least an Earth-sized planet at the right distance from its parent star to have liquid water on its surface. This condition defines the habitable zone, which is the range of distance around the star that would be suitable for life.

Proxima Centauri b orbits the star (Proxima Centauri) in only 11.2 days and has a minimum mass of 1.27 Earth masses.

Proxima Centauri b matches this condition and is also a special planet for us because it orbits our nearest star, located just 4.2 light-years away. Near does not necessarily mean bright, however. Proxima Centauri is actually a cool red star that is much too dim to be seen with the naked eye and, with a mass about eight times smaller than the Sun, it is also around 600 times less luminous. The habitable zone around this red-dwarf star is therefore at much shorter distances than the corresponding distances in our solar system – equivalent to a small fraction of the orbit of Mercury. Proxima Centauri b orbits the star in only 11.2 days and has a minimum mass of 1.27 Earth masses. The exact value of the mass cannot be determined by the radial-velocity method because it depends on the unknown inclination of the orbit with respect to the line of sight.

During the first half of 2016, Proxima Centauri was regularly observed with the HARPS spectrograph on the ESO 3.6 m telescope at La Silla in Chile, and simultaneously monitored by other telescopes around the world. This campaign, which was led by Guillem Anglada-Escudé of Queen Mary University of London and shared publicly online as it happened, was called the Pale Red Dot.

The final results have now been published, concluding with a discussion on the habitability of the planet. Whether there is an atmosphere and liquid water on the surface is the subject of intense debate because red-dwarf stars can display quite violent behaviour. The main threats identified in the paper are tidal locking (for example, does the planet  always present the same face to the star, as does our Moon?), strong stellar magnetic fields and strong flares with high ultraviolet and X-ray fluxes. Whereas robotic exploration is some time away, the future European Extremely Large Telescope (E-ELT) should be able to see the planet and probe its atmosphere spectroscopically.

Particle physics under the spotlight in Chicago

This summer, the city of Chicago in Illinois was not only a vacation destination for North American tourists – it was also the preferred destination for more than 1400 scientists, students, educators and members of industry from around the world. Fifty-one countries from Africa, Asia, Australia, Europe, North America and South America were represented at the 38th International Conference on High Energy Physics (ICHEP), which is the largest such conference ever held.

Indeed, the unexpectedly large interest in the meeting caused some re-thinking of the conference agenda. A record 1600 abstracts were submitted, of which 600 were selected for parallel presentations and 500 for posters by 65 conveners. During three days of plenary sessions, 36 speakers from around the world overviewed results presented at the parallel and poster sessions.

One of the most popular parallel-session themes concerned enabling technologies, totalling around 400 abstract submissions, and rich collaborative opportunities were discussed in the new “technology applications and industrial opportunities” track. Another innovation at ICHEP 2016 concerned diversity and inclusion, which appeared as a separate parallel track. A number of new initiatives in communication, education and outreach were also piloted. These included lunchtime sessions aimed at increasing ICHEP participants’ skills in outreach and communication through news and social media, “art interventions” and a physics slam, where five scientists competed to earn audience applause through presentations of their research. The outreach programme was complemented by events at 30 public libraries in Chicago and a public lecture about gravitational waves.

While the public had an increasing number of ways to connect with the conference, however, the main attraction for attendees remained the same: new science results. And no result was more highly anticipated than the updates on the 750 GeV diphoton resonance hinted at in data from the ATLAS and CMS experiments recorded during 2015.

Exploring the unknown

The spectacular performance of the LHC during 2016, which saw about 20 fb–1 of 13 TeV proton–proton collisions delivered to ATLAS and CMS by the time of the conference, gave both experiments unprecedented sensitivity to new particles and interactions. The collaborations reported on dozens of different searches for new phenomena. In a dramatic parallel session, both ATLAS and CMS revealed that their 2016 data do not confirm the previous hints of a diphoton resonance at 750 GeV (figure 1); apparently, those hints were nothing more than tantalising statistical fluctuations. Disappointed theorists were happily distracted by other new results, however. As expected, these include interesting excesses worth keeping an eye on as more data become available. Still in the running for future big discoveries are the production of heavy particles predicted by supersymmetry and exotic theories, and the direct production at the LHC of dark-matter particles. So far, no signs of such particles have been seen at ATLAS or CMS.

Many other experiments reported on their own searches for new particles and interactions, including new LHCb results on the most sensitive search to date for CP violation in the decays of neutral D mesons which, if detected, would allow researchers to probe CP violation in the up-type quark sector. Final results from the MEG (Mu to E Gamma) experiment at the Paul Scherrer Institute in Switzerland revealed the most sensitive search to date for charged lepton-flavour violation, which would also be a clear signature of new physics. Using bottom and charm quarks to probe new physics, the Beijing Spectrometer (BES) at IHEP in China and the Belle experiment at KEK in Japan showcased a series of precision and rare-process results. While they have a few interesting discrepancies from Standard Model (SM) predictions, presently no signs of physics beyond the SM have emerged.

Meanwhile on the heavy-ion front, the ALICE experiment at the LHC joined ATLAS, CMS and LHCb in presenting new observations of the dramatic and mysterious properties of quark–gluon plasma. This was complemented by results from the STAR and PHENIX experiments at RHIC at the Brookhaven National Laboratory in the US.

Rediscovering the Higgs

Perhaps unsurprisingly, given that its discovery in 2012 was one of the biggest in particle physics for a generation, the Higgs boson was the subject of 30 parallel-session talks. New LHC measurements are a great indicator of how the Higgs boson is being used as a new tool for discovery. Already Run 2 of the LHC has produced more Higgs bosons than in Run 1, and the Higgs has been “rediscovered” in the new data with a significance of 10σ (figure 2). A major focus of the new analyses is to demonstrate the production of Higgs particles in association with a W or Z boson, or with a pair of top quarks and their decay patterns. These production and decay channels are important tests of Higgs properties, and so far the Higgs seems to behave just as the SM predicts.

About 20 new searches looking for heavier cousins of the Higgs were reported. These “heavy Higgs”, once produced, could decay in ways very similar to the Higgs itself, or might decay into a pair of Higgs bosons. Other searches covered the possibility that the Higgs boson itself has exotic decays: “invisible” decays into undetected particles, decays into exotic bosons or decays that violate the conservation of lepton flavour. No signals have emerged yet, but the LHC experiments are providing increasing sensitivity and coverage of the full menu of possibilities.

Neutrino mysteries

With neutrinos currently among the most interesting objects to study to look for signs of physics beyond the SM, ICHEP included reports from three powerful long-baseline neutrino experiments: T2K at J-PARC in Japan, and NOνA and MINOS at Fermilab in the US, which are addressing some of the fundamental questions about neutrinos such as CP violation, the ordering of their masses and their mixing behaviour. While not yet conclusive, the results presented at ICHEP show that neutrino physics is entering a new era of sensitivity and maturity. Data from T2K currently favour the idea of CP violation in the lepton sector, which is one of the conditions required for the observed dominance of matter over antimatter in the universe, while data from NOνA disfavour the idea that mixing of the second and third neutrino flavours is maximal, representing a test of a new symmetry that underlies maximal mixing (figure 3).

With nearly twice the antineutrino data in 2016 compared with its 2015 result, the T2K experiment’s observed electron antineutrino appearance rate is lower than would be expected if CP asymmetry is conserved (left). With data accumulated until May 2016, representing 16% of its planned total, NOvA’s results (right) show an intriguing preference for non-maximal mixing – that is, a preference for sin2θ23 ≠ 0.5.

The long simmering issue of sterile neutrinos – hypothesised particles that do not interact via SM forces – also received new attention in Chicago. The 20 year-old signal from the LSND experiment at Los Alamos National Laboratory in the US, which indicates 4σ evidence for such a particle, was matched some years ago by anomalies from the MiniBooNE experiment at Fermilab. As reported at ICHEP, however, cosmological data and new results from IceCUBE in Antarctica and MINOS+ at Fermilab do not confirm the existence of sterile neutrinos. On the other hand, the Daya Bay experiment in China, Reno in South Korea and Double Chooz in France all confirm a reactor neutrino flux that is low compared with the latest modelling, which could arise from mixing with sterile neutrinos. However, all three of these experiments also confirm a “bump” in the neutrino spectrum at an energy of around 5 MeV that is not predicted, so there is certainly more work to be done in understanding the modelling.

Probing the dark sector

Dark matter dominates the universe, but its identity is still a mystery. Indeed, some theorists speculate about the existence of an entire “dark sector” made up of dark photons and multiple species of dark matter. Numerous approaches are being pursued to detect dark matter directly, and these are complemented by searches at the LHC, surveys of large-scale structure and attempts to observe high-energy particles from dark-matter annihilation or decay in or around our Galaxy. Regarding direct detection, experiments are advancing steadily in sensitivity: the latest examples reported at ICHEP came from LUX in the US and PandaX-II in China, and already they exclude a substantial fraction of the parameter space of supersymmetric dark-matter candidates (figure 4).

Dark energy – the name given to the entity thought to be driving the cosmic acceleration of today’s universe – is one of two provocative mysteries, the other concerning the primordial epoch of cosmic inflation. ICHEP sessions concerned both current and planned observations of such effects, using either optical surveys of large-scale structure or the cosmic microwave background. Both approaches together can probe the nature of dark energy by looking at the abundance of galaxy clusters as a function of redshift; as reported at the Chicago event, this is already happening via the Dark Energy Survey and the South Pole Telescope.

Progress in theory

Particle theory has been advancing rapidly along two main lines: new ideas and approaches for persistent mysteries such as dark matter and naturalness, and more precise calculations of SM processes that are relevant for ongoing experiments. As emphasised at ICHEP 2016, new ideas for the identity of dark matter have had implications for LHC searches and for attempts to observe astrophysical dark-matter annihilation, in addition to motivating a new experimental programme looking for dark photons. A balanced view of the naturalness problem, which concerns the extent to which fundamental parameters appear tuned for our existence, was presented at ICHEP. While supersymmetry is still the leading explanation, theorists are also studying alternatives such as the “relaxion”. This shifts attention to the dynamics of the early universe, with consequences that may be observable in future experiments.

There have also been tremendous developments in theoretical calculations with higher-order QCD and electroweak corrections, which are critical for understanding the SM backgrounds when searching for new physics – particularly at the LHC and, soon, at the SuperKEKB B factory in Japan. The LHC’s experimental precision on top-quark production is now reaching the point where theory requires next-to-next-to-next-to-leading-order corrections just to keep up, and this is starting to happen. In addition, recent lattice QCD calculations play a key role in extracting fundamental parameters such as the CKM mixing matrix, as well as squeezing down uncertainties to the point where effects of new phenomena may conclusively emerge.

Facilities focus

With particle physics being a global endeavour, the LHC at CERN serves as a shining example of a successful large international science project. At a session devoted to future facilities, leaders from major institutions presented the science case and current status of new projects that require international co-operation. These include the International Linear Collider (ILC) in Japan, the Circular Electron–Positron Collider (CEPC) in China, an energy upgrade of the LHC, the Compact Linear Collider (CLIC) and the Future Circular Collider (FCC) at CERN, the Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) in the US, and the Hyper-K neutrino experiment in Japan.

While the high-energy physics experiments of the future were a key focus, one of the well-attended sessions at ICHEP 2016 concerned professional issues critical to a successful future for the field of particle physics. Diversity and inclusion were the subject of four hours of parallel sessions, discussions and posters, with themes such as communication, inclusion and respect in international collaboration and how harassment and discrimination in scientific communities create barriers to access. The sessions were mostly standing-room only, with supportive but candid discussion of the deep divides, harassment, and biases – both explicit and implicit – that need to be overcome in the science community. Speakers described a number of positive initiatives, including the Early Career, Gender and Diversity office established by the LHCb collaboration, the Study Group on Diversity in the ATLAS collaboration, and the American Physical Society’s “Bridge Program” to increase the number of physics PhDs among students from under-represented backgrounds.

ICHEP 2016 clearly showed that there are a vast number of scientific opportunities on offer now and in the future with which to further explore the smallest and largest structures in the universe. The LHC is performing beyond expectations, and will soon enter a new era with its planned high-luminosity upgrade. Meanwhile, propelled by surprising discoveries from a series of pioneering experiments, neutrino physics has progressed dramatically, and its progress will continue with new and innovative experiments. Intense kaon and muon beams, and SuperKEKB, will provide excellent opportunities to search for new physics in different ways, and will help to inform future research directions. Diverse approaches to probe the nature of dark matter and dark energy are also on their way. While we cannot know what will be the headline results at the next ICHEP event – which will be held in 2018 in Seoul, South Korea – we can be certain that surprises are in store.

bright-rec iop pub iop-science physcis connect