By Robert K Logan
World Scientific
Hardback: £42 $64
Paperback: £30 $43
E-book: $83
Robert Logan is a physicist who since 1971 has taught an interdisciplinary course, “The Poetry of Physics and the Physics of Poetry”, at the University of Toronto. In this book, which grew out of the course, he introduces the evolution of ideas in physics by first briefly recalling the ancient science of Mesopotamia, Egypt and China before addressing in detail the revolutions that started in the 16th century and the more modern advances, including the birth of the Standard Model of particle physics. Sprinkled with quotations from leading physicists of the respective times, the book reports in an interesting way the historical connections that lead from one discovery to another and the impact physics had on (and received from) other branches of science, philosophy, arts, theology, etc. Thus he hopes to convey not only the poetry or beauty of physics but also how physics has influenced the humanities.
The word “physics” derives from the Greek word phusis, meaning “nature”, and Logan wonders what physics would be without the ancient Greek philosophers. However, even with them, interest in science declined as theology became the dominant concern of the day. It was mainly thanks to René Descartes, who refused to accept past philosophical truths that he could not verify for himself (“Cartesian doubt”), and to other contemporary philosophers, that a change in attitude towards science began to develop in the beginning of the 17th century. During that period, Galileo Galilei, Johannes Kepler and several other scientists uncovered many mysteries of nature, which eventually led to Isaac Newton’s breakthroughs. In return, the philosophy of the British (Locke, Berkeley, Hume) and French (Voltaire, Condillac, Diderot, Condoret) movements was heavily influenced by Newton’s physics: their reflections were based directly on the scientific method.
Moving on, the scientific advances of the 20th century would not have been possible without the abstract mathematical concepts developed in the 19th century or technological breakthroughs such as the invention of the vacuum pump, which paved the way for the study of all gas-discharge experiments and led to the discovery of X-rays and the electron. Logan connects these and other discoveries very naturally, claiming along the way that the distinction between physics and chemistry is artificial and a “historic accident”.
Breakthroughs in science are based on the gift of abstract thinking, astronomy being one of the earliest examples. It is interesting to realize that the structure of certain languages is intimately connected to abstract thinking. According to the Toronto school of thought in communication theory, to which Logan has contributed, “the use of a phonetic alphabet and its particular coding led the Greeks to deductive logic and abstract theoretical science”. This was probably one of the main reasons that “abstract theoretical science is a particular outgrowth of Western culture” – as opposed to Eastern cultures, which use a much more complex alphabet.
Apart from discussing major physics discoveries, Logan also triggers readers (or at least his students) to acquire a critical attitude, quoting thinkers such as Thomas Kuhn and Karl Popper: “Science cannot prove that a hypothesis is correct. It can only verify that the hypothesis explains all observed facts and has passed all experimental tests of its validity.” After all, a physics course is more than just conveying acquired knowledge.
I can gladly recommend this book to anyone wanting to refresh their physics basics or who would like to learn about the implications that physics has for other disciplines, and vice versa. I certainly enjoyed reading it and nostalgically recalled several moments from my undergraduate studies. It is a pity that there are many misprints and some unclear sentences.