
Since 1966 the Rencontres de Moriond has been one of the most important conferences for theoretical and experimental particle physicists. The Electroweak Interactions and Unified Theories session of the 59th edition attracted about 150 participants to La Thuile, Italy, from 23 to 30 March, to discuss electroweak, Higgs-boson, top-quark, flavour, neutrino and dark-matter physics, and the field’s links to astrophysics and cosmology.
Particle physics today benefits from a wealth of high-quality data at the same time as powerful new ideas are boosting the accuracy of theoretical predictions. These are particularly important while the international community discusses future projects, basing projections on current results and technology. The conference heard how theoretical investigations of specific models and “catch all” effective field theories are being sharpened to constrain a broader spectrum of possible extensions of the Standard Model. Theoretical parametric uncertainties are being greatly reduced by collider precision measurements and lattice QCD. Perturbative calculations of short-distance amplitudes are reaching to percent-level precision, while hadronic long-distance effects are being investigated both in B-, D- and K-meson decays, as well as in the modelling of collider events.
Comprehensive searches
Throughout Moriond 2025 we heard how a broad spectrum of experiments at the LHC, B factories, neutrino facilities, and astrophysical and cosmological observatories are planning upgrades to search for new physics at both low- and high-energy scales. Several fields promise qualitative progress in understanding nature in the coming years. Neutrino experiments will measure the neutrino mass hierarchy and CP violation in the neutrino sector. Flavour experiments will exclude or confirm flavour anomalies. Searches for QCD axions and axion-like particles will seek hints to the solution of the strong CP problem and possible dark-matter candidates.
The Standard Model has so far been confirmed to be the theory that describes physics at the electroweak scale (up to a few hundred GeV) to a remarkable level of precision. All the particles predicted by the theory have been discovered, and the consistency of the theory has been proven with high precision, including all calculable quantum effects. No direct evidence of new physics has been found so far. Still, big open questions remain that the Standard Model cannot answer, from understanding the origin of neutrino masses and their hierarchy, to identifying the origin and nature of dark matter and dark energy, and explaining the dynamics behind the baryon asymmetry of the universe.
Several fields promise qualitative progress in understanding nature in the coming years
The discovery of the Higgs boson has been crucial to confirming the Standard Model as the theory of particle physics at the electroweak scale, but it does not explain why the scalar Brout–Englert–Higgs (BEH) potential takes the form of a Mexican hat, why the electroweak scale is set by a Higgs vacuum expectation value of 246 GeV, or what the nature of the Yukawa force is that results in the bizarre hierarchy of masses coupling the BEH field to quarks and leptons. Gravity is also not a component of the Standard Model, and a unified theory escapes us.
At the LHC today, the ATLAS and CMS collaborations are delivering Run 1 and 2 results with beyond-expectation accuracies on Higgs-boson properties and electroweak precision measurements. Projections for the high-luminosity phase of the LHC are being updated and Run 3 analyses are in full swing. The LHCb collaboration presented another milestone in flavour physics for the first time at Moriond 2025: the first observation of CP violation in baryon decays. Its rebuilt Run 3 detector with triggerless readout and full software trigger reported its first results at this conference.
Several talks presented scenarios of new physics that could be revealed in today’s data given theoretical guidance of sufficient accuracy. These included models with light weakly interacting particles, vector-like fermions and additional scalar particles. Other talks discussed how revisiting established quantum properties such as entanglement with fresh eyes could offer unexplored avenues to new theoretical paradigms and overlooked new-physics effects.