Particle Cosmology and Astrophysics, by Dan Hooper, Princeton University Press

In 1989, Rocky Kolb and Mike Turner published The Early Universe – a seminal book that offered a comprehensive introduction to the then-nascent field of particle cosmology, laying the groundwork for a generation of physicists to explore the connections between the smallest and largest scales of the universe. Since then, the interfaces between particle physics, astrophysics and cosmology have expanded enormously, fuelled by an avalanche of new data from ground-based and space-borne observatories.
In Particle Cosmology and Astrophysics, Dan Hooper follows in their footsteps, providing a much-needed update that captures the rapid developments of the past three decades. Hooper, now a professor at the University of Wisconsin–Madison, addresses the growing need for a text that introduces the fundamental concepts and synthesises the vast array of recent discoveries that have shaped our current understanding of the universe.
Hooper’s textbook opens with 75 pages of “preliminaries”, covering general relativity, cosmology, the Standard Model of particle physics, thermodynamics and high-energy processes in astrophysics. Each of these disciplines is typically introduced in a full semester of dedicated study, supported by comprehensive texts. For example, students seeking a deeper understanding of high-energy phenomena are likely to benefit from consulting Longair’s High Energy Astrophysics or Sigl’s Astroparticle Physics. Similarly, those wishing to advance their knowledge in particle physics will find that more detailed treatments are available in Griffiths’ Introduction to Elementary Particles or Peskin and Schroeder’s An Introduction to Quantum Field Theory, to mention just a few textbooks recommended by the author.
A much-needed update that captures the rapid developments of the past three decades
By distilling these complex subjects into just enough foundational content, Hooper makes the field accessible to those who have been exposed to only a fraction of the standard coursework. His approach provides an essential stepping stone, enabling students to embark on research in particle cosmology and astrophysics with a well calibrated introduction while still encouraging further study through more specialised texts.
Part II, “Cosmology”, follows a similarly pragmatic approach, providing an updated treatment that parallels Kolb and Turner while incorporating a range of topics that have, in the intervening years, become central to modern cosmology. The text now covers areas such as cosmic microwave background (CMB) anisotropies, the evidence for dark matter and its potential particle candidates, the inflationary paradigm, and the evidence and possible nature of dark energy.
Hooper doesn’t shy away from complex subjects, even when they resist simple expositions. The discussion on CMB anisotropies serves as a case in point: anyone who has attempted to condense this complex topic into a few graduate lectures is aware of the challenge in maintaining both depth and clarity. Instead of attempting an exhaustive technical introduction, Hooper offers a qualitative description of the evolution of density perturbations and how one extracts cosmological parameters from CMB observations. This approach, while not substituting for the comprehensive analysis found in texts such as Dodelson’s Modern Cosmology or Baumann’s Cosmology, provides students with a valuable overview that successfully charts the broad landscape of modern cosmology and illustrates the interconnectedness of its many subdisciplines.
Part III, “Particle Astrophysics”, contains a selection of topics that largely reflect the scientific interests of the author, a renowned expert in the field of dark matter. Some colleagues might raise an eyebrow at the book devoting 10 pages each to entire fields such as cosmic rays, gamma rays and neutrino astrophysics, and 50 pages to dark-matter candidates and searches. Others might argue that a book titled Particle Cosmology and Astrophysics is incomplete without detailing the experimental techniques behind the extraordinary advances witnessed in these fields and without at least a short introduction to the booming field of gravitational-wave astronomy. But the truth is that, in the author’s own words, particle cosmology and astrophysics have become “exceptionally multidisciplinary,” and it is impossible in a single textbook to do complete justice to domains that intersect nearly all branches of physics and astronomy. I would also contend that it is not only acceptable but indeed welcome for authors to align the content of their work with their own scientific interests, as this contributes to the diversity of textbooks and offers more choice to lecturers who wish to supplement a standard curriculum with innovative, interdisciplinary perspectives.
Ultimately, I recommend the book as a welcome addition to the literature and an excellent introductory textbook for graduate students and junior scientists entering the field.