Topics

Léon Rosenfeld: Physics, Philosophy, and Politics in the Twentieth Century

28 January 2013

By Anja Skaar Jacobsen
World Scientific
Hardback: £56
E-book: £69

CCboo1_01_13

The life of Léon Rosenfeld (1904–1974) spanned all of the three main epochs of the development of physics during the 20th century, at least according to the classification that Vicky Weisskopf expressed in a colloquium at CERN entitled “The development of science during this century”. So it should not be surprising that, as Anja Skaar Jacobsen of the Niels Bohr Archive demonstrates, the activities of this outstanding Belgian physicist cannot be grouped into a single category. Rosenfeld, who was extremely curious and erudite, contributed substantially to electrodynamics, to the Copenhagen interpretation of quantum mechanics and to the problem of the measurability of quantum fields. He was also a science historian, a tenacious political activist and, last but not least, the founding editor of the journal Nuclear Physics.

The first and second of the six chapters follow Rosenfeld’s life and interests through the 1930s up to the period where he actively participated in the formulation of the so-called Copenhagen interpretation of quantum theory and collaborated with Niels Bohr. The interface between science and politics in this period is specifically addressed in the third chapter. Rosenfeld never joined the communist party but progressively became a convinced leftist intellectual. Prior to the Stalinist purge in the second half of the 1930s, Copenhagen was also at the heart of political debates, hosting many leaders such as Lev Trotsky who visited Denmark in 1932. The fourth chapter describes how Rosenfeld survived the war in Utrecht where he took over the position of George Uhlenbeck, who left for the US in 1939. The final two chapters focus on his political commitment during the Cold War and on heated discussions surrounding the attacks on the Copenhagen interpretation, which Rosenfeld fiercely defended throughout his life.

The interests of Rosenfeld and the second “quantum generation” implicitly encourage debates. In a purely scientific context, there is the broad problem of the interpretation of quantum mechanics. The quantum theory of measurement was perceived as essential in the 1930s and throughout the 1940s. How does a classical object interact with a quantum system? Does it make sense to separate the world into quantum systems (the observables) and classical observers? The discussions leading to the most successful applications of quantum mechanics are a continuous source of reflection, from the early Einstein-Bohr controversy to Bell’s inequalities via the Bohmian interpretation of quantum theory. Quantum mechanics is not reducible either to a successful computational framework or to a philosophical perspective. It is, rather, a complicated mix of ideas that matured in one of the most difficult periods of European history. To understand quantum mechanics also means to understand the history of the first part of the 20th century: this is probably one of the main legacies, among others, of the life of Léon Rosenfeld.

bright-rec iop pub iop-science physcis connect