IPAC goes virtual

8 June 2020
Live around the world 25 of more than 3,000 registered participants are seen participating in IPAC’20’s online closing session. Credit: IPAC’2020

More than 3000 accelerator specialists gathered in cyber-space from 11 to 14 May for the 11th International Particle Accelerator Conference (IPAC). The conference was originally destined for the GANIL laboratory in Caen, a charming city in Normandy, and host to the flagship radioactive-ion-beam facility SPIRAL-2, but the coronavirus pandemic forced the cancellation of the in-person meeting and the French institutes CNRS/IN2P3, CEA/IRFU, GANIL, Soleil and ESRF agreed to organise a virtual conference. Oral presentations and the accelerator-prize session were maintained, though unfortunately the poster and industry sessions had to be cancelled. The scientific programme committee whittled down more than 2000 proposals for talks into 77 presentations which garnered more than 43,000 video views across 60 countries, making IPAC’20 an involuntary pioneer of virtual conferencing and a lighthouse of science during the lockdown.

Recent trends indicate a move towards the use of permanent magnets

IPAC’20’s success relied on a programme of recent technical highlights, new developments and future plans in the accelerator world. Weighing in at 1,998 views, the most popular talk of the conference was by Ben Shepherd from STFC’s Daresbury Laboratory in the UK, who spoke on high-technology permanent magnets. Accelerators do not only accelerate ensembles of particles, but also use strong magnetic fields to guide and focus them into very small volumes, typically just micro or nanometres in size. Recent trends indicate a move towards the use of permanent magnets that provide strong fields but do not require external power, and can provide outstanding field quality. Describing the major advances for permanent magnets in terms of production, radiation resistance, tolerances and field tuning, Shepherd presented high tech devices developed and used for the SIRIUS, ESRF-EBS, SPRING-8, CBETA, SOLEIL and CUBE-ECRIS facilities, and also presented the Zero-Power Tunable Optics (ZEPTO) collaboration between STFC and CERN, which offers 15 – 60 T/m tunability in quadrupoles and 0.46 – 1.1 T in dipoles.

Top of the talks

The seven IPAC’20 presentations with the most views included four by outstanding female scientists. CERN Director General Fabiola Gianotti presented strategic considerations for future accelerator-based particle physics. While pointing out the importance of Europe participating in projects elsewhere in the world, she made the strong point that CERN should host an ambitious future collider, and discussed the options being considered, pointing to the update of the European Strategy for Particle Physics soon to be approved by the CERN Council. Sarah Cousineau from Oakridge reported on accelerator R&D as a driver for science in general, pointing out that accelerators have directly contributed to more than 25 Nobel Prizes, including the Higgs-boson discovery at the LHC in 2012. The development of superconducting accelerator technology has enabled projects for colliders, photon science, nuclear physics and neutron spallation sources around the world, with several light sources and neutron facilities currently engaged in COVID-19 studies.

SPIRAL-2 will explore exotic nuclei near the limits of the periodic table

The benefits of accelerator-based photon science for society was also emphasized by Jerry Hastings from Stanford University and SLAC, who presented the tremendous progress in structural biology driven by accelerator-based X-ray sources, and noted that research can be continued during COVID-19 times thanks to the remote synchrotron access pioneered at SSRL. Stressing the value of international collaboration, Hastings presented the outcome of an international X-ray facilities meeting that took place in April and defined an action plan for ensuring the best possible support to COVID-19 research. GANIL Director Alahari Navin presented new horizons in nuclear science, reviewing facilities around the world and presenting his own laboratory’s latest activities. GANIL has now started commissioning SPIRAL-2, which will allow users to explore the as-yet unknown properties of exotic nuclei near the limits of the periodic table of elements, and has performed its initial science experiment. Liu Lin from LNLS in Brazil presented the commissioning results for the new 4th generation SIRIUS light source, showing that the functionality of the facility has already been demonstrated by storing 15 mA of beam current. Last, but not least in the top-seven most-viewed talks, Anke-Susanne Müller from KIT presented the status of the study for a 100 km Future Circular Collider – just one of the options for an ambitious post-LHC project at CERN.

Many other highlights from the accelerator field were presented during IPAC’20. Kyo Shibata (KEK) discussed the progress in physics data-taking at the SuperKEKb factory, where the BELLE II experiment recently reported its first result. Ferdinand Willeke (BNL) presented the electron-ion collider approved to be built at BNL, Porntip Sudmuang (SLRI) showed construction plans for a new light source in Thailand, and Mohammed Eshraqi (ESS) discussed the construction of the European Spallation Source in Sweden. At the research frontier towards compact accelerators, Chang Hee Nam (IBS, Korea) explained prospects for laser-driven GeV-electron beams from plasma-wakefield accelerators and Arnd Specka (LLR/CNRS) showed plans for compact European plasma-accelerator facility EuPRAXIA, which is entering its next phase after successful completion of a conceptual-design report. The accelerator-application session rounded the picture off with presentations by Annalisa Patriarca (Institute Curie) about accelerator challenges in a new radiation-therapy technique called FLASH, in which ultra-fast delivery of radiation dose reduces damage to healthy tissue, by Charlotte Duchemin (CERN) on the production of non-conventional radionuclides for medical research at the MEDICIS hadron beam facility, by Toms Torims (Riga Technical University) on the treatment of marine exhaust gases using electron beams and by Adrian Fabich (SCK-CEN) on proton-driven nuclear-waste transmutation.

To the credit of the French organisers, the virtual setup worked seamlessly. The concept relied on pre-recorded presentations and a text-driven chat function which allowed registered participants to participate from time zones across the world. Activating the sessions in half-day steps preserved the appearance of live presentations to some degree, before a final live session, during which the four prizes of the accelerator group of the European Physical Society were awarded.

bright-rec iop pub iop-science physcis connect