Topics

In defiance of cosmic-ray power laws

5 July 2024

From its pristine vantage point on the International Space Station, the Calorimetric Electron Telescope, CALET, has uncovered anomalies in the spectra of protons and electrons below the cosmic-ray knee.

The Calorimetric Electron Telescope

In a series of daring balloon flights in 1912, Victor Hess discovered radiation that intensified with altitude, implying extra-terrestrial origins. A century later, experiments with cosmic rays have reached low-Earth orbit, but physicists are still puzzled. Cosmic-ray spectra are difficult to explain using conventional models of galactic acceleration and propagation. Hypotheses for their sources range from supernova remnants, active galactic nuclei and pulsars to physics beyond the Standard Model. The study of cosmic rays in the 1940s and 1950s gave rise to particle physics as we know it. Could these cosmic messengers be about to unlock new secrets, potentially clarifying the nature of dark matter?

The cosmic-ray spectrum extends well into the EeV regime, far beyond what can be reached by particle colliders. For many decades, the spectrum was assumed to be broken into intervals, each following a power law, as Enrico Fermi had historically predicted. The junctures between intervals include: a steepening decline at about 3 × 106 GeV known as the knee; a flattening at about 4 × 109 GeV known as the ankle; and a further steepening at the supposed end of the spectrum somewhere above 1010 GeV (10 EeV).

The Calorimetric Electron Telescope detector

While the cosmic-ray population at EeV energies may include contributions from extra-galactic cosmic rays, and the end of the spectrum may be determined by collisions with relic cosmic-microwave-background photons – the Greisen–Zatsepin–Kuzmin cutoff – the knee is still controversial as the relative abundance of protons and other nuclei is largely unknown. What’s more, recent direct measurements by space-borne instruments have discovered “spectral curvatures” below the knee. These significant deviations from a pure power law range from a few hundred GeV to a few tens of TeV. Intriguing anomalies in the spectra of cosmic-ray electrons and positrons have also been observed below the knee.

Electron origins

The Calorimetric Electron Telescope (CALET; see “Calorimetric telescope” figure) on board the International Space Station (ISS) provides the highest-energy direct measurements of the spectrum of cosmic-ray electrons and positrons. Its goal is to observe discrete sources of high-energy particle acceleration in the local region of our galaxy. Led by the Japan Aerospace Exploration Agency, with the participation of the Italian Space Agency and NASA, CALET was launched from the Tanegashima Space Center in August 2015, becoming the second high-energy experiment operating on the ISS following the deployment of AMS-02 in 2011. During 2017 a third experiment, ISS-CREAM, joined AMS-02 and CALET, but its observation time ended prematurely.

A candidate electron event in CALET

As a result of radiative losses in space, high-energy cosmic-ray electrons are expected to originate just a few thousand light-years away, relatively close to Earth. CALET’s homogeneous calorimeter (fully active, with no absorbers) is optimised to reconstruct such particles (see “Energetic electron” figure). With the exception of the highest energies, anisotropies in their arrival direction are typically small due to deflections by turbulent interstellar magnetic fields.

Energy spectra also contain crucial information as to where and how cosmic-ray electrons are accelerated. And they could provide possible signatures of dark matter. For example, the presence of a peak in the spectrum could be a sign of dark-matter decay, or dark-matter annihilation into an electron–positron pair, with a detected electron or positron in the final state.

Direct measurements of the energy spectra of charged cosmic rays have recently achieved unprecedented precision thanks to long-term observations of electrons and positrons of cosmic origin, as well as of individual elements from hydrogen to nickel, and even beyond. Space-borne instruments such as CALET directly identify cosmic nuclei by measuring their electric charge. Ground-based experiments must do so indirectly by observing the showers they generate in the atmosphere, incurring large systematic uncertainties. Either way, hadronic cosmic rays can be assumed to be fully stripped of atomic electrons in their high-temperature regions of origin.

A rich phenomenology

The past decade has seen the discovery of unexpected features in the differential energy spectra of both leptonic and hadronic cosmic rays. The observation by PAMELA and AMS of an excess of positrons above 10 GeV has generated widespread interest and still calls for an unambiguous explanation (CERN Courier December 2016 p26). Possibilities include pair production in pulsars, in addition to the well known interactions with the interstellar gas, and the annihilation of dark matter into electron–positron pairs.

Combined electron and positron flux measurements as a function of kinetic energy

Regarding cosmic-ray nuclei, significant deviations of the fluxes from pure power-law spectra have been observed by several instruments in flight, including by CREAM on balloon launches from Antarctica, by PAMELA and DAMPE aboard satellites in low-Earth orbit, and by AMS-02 and CALET on the ISS. Direct measurements have also shown that the energy spectra of “primary” cosmic rays is different from those of “secondary” cosmic rays created by collisions of primaries with the interstellar medium. This rich phenomenology, which encodes information on cosmic-ray acceleration processes and the history of their propagation in the galaxy, is the subject of multiple theoretical models.

An unexpected discovery by PAMELA, which had been anticipated by CREAM and was later measured with greater precision by AMS-02, DAMPE and CALET, was the observation of a flattening of the differential energy spectra of protons and helium. Starting from energies of a few hundred GeV, the proton flux shows a smooth and progressive hardening (increase in gradient) of the spectrum that continues up to around 10 TeV, above which a completely different regime is established. A turning point was the subsequent discovery by CALET and DAMPE of an unexpected softening of proton and helium fluxes above about 10 TeV/Z, where the atomic number Z is one for protons and two for helium. The presence of a second break challenges the conventional “standard model” of cosmic-ray spectra and calls for a further extension of the observed energy range, currently limited to a few hundred TeV.

At present, only two experiments in low-Earth orbit have an energy reach beyond 100 TeV: CALET and DAMPE. They rely on a purely calorimetric measurement of the energy, while space-borne magnetic spectrometers are limited to a maximum magnetic “rigidity” – a particle’s momentum divided by its charge – of a few teravolts. Since the end of PAMELA’s operations in 2016, AMS-02 is now the only instrument in orbit with the ability to discriminate the sign of the charge. This allows separate measurements of the high-energy spectra of positrons and antiprotons – an important input to the observation of final states containing antiparticles for dark-matter searches. AMS-02 is also now preparing for an upgrade: an additional silicon tracker layer will be deployed at the top of the instrument to enable a significant increase in its acceptance and energy reach (CERN Courier March/April 2024 p7).

Pioneering observations

CALET was designed to extend the energy reach beyond the rigidity limit of present space-borne spectrometers, enabling measurements of electrons up to 20 TeV and measurements of hadrons up to 1 PeV. As an all-calorimetric instrument with no magnetic field, its main science goal is to perform precision measurements of the detailed shape of the inclusive spectra of electrons and positrons.

The Vela Pulsar

Thanks to its advanced imaging calorimeter, CALET can measure the kinetic energy of incident particles well into TeV energies, maintaining excellent proton–electron discrimination throughout. CALET’s homogeneous calorimeter has a total thickness of 30 radiation lengths, allowing for a full containment of electron showers. It is preceded by a high-granularity pre-shower detector with imaging capabilities that provide a redundant measurement of charge via multiple energy-loss measurements. The calibration of the two instruments is the key to controlling the energy scale, motivating beam tests at CERN before launch.

A first important deviation from a scale-invariant power-law spectrum was found for electrons near 1 TeV. Here, CALET and DAMPE observed a significant flux reduction, as expected from the large radiative losses of electrons during their travel in space. CALET has now published a high-statistics update up to 7.5 TeV, reporting the presence of candidate electrons above the 1 TeV spectral break (see “Electron break” figure).

This unexplored region may hold some surprises. For example, the detection of even higher energy electrons, such as the 12 TeV candidate recently found by CALET, may indicate the contribution of young and nearby sources such as the Vela supernova remnant, which is known to host a pulsar (see “Pulsar home” image).

CALET was designed to extend the energy reach beyond the rigidity limit of present space-borne spectrometers

A second unexpected finding is the observation of a significant reduction in the proton flux around 10 TeV. This bump and dip were also observed by DAMPE and anticipated by CREAM, albeit with low statistics (see “Proton bump” figure). A precise measurement of the flux has allowed CALET to fit the spectrum with a double-broken power law: after a spectral hardening starting at a few hundred GeV, which is also observed by AMS-02 and PAMELA, and which progressively increases above 500 GeV, a steep softening takes place above 10 TeV.

Proton flux measurements as a function of the kinetic energy

A similar bump and dip have been observed in the helium flux. These spectral features may result from a single physical process that generates a bump in the cosmic-ray spectrum. Theoretical models include an anomalous diffusive regime near the acceleration sources, the dominance of one or more nearby supernova remnants, the gradual release of cosmic rays from the source, and the presence of additional sources.

CALET is also a powerful hunter of heavier cosmic rays. Measurements of the spectra of boron, carbon and oxygen ions have been extended in energy reach and precision, providing evidence of a progressive spectral hardening for most of the primary elements above a few hundred GeV per nucleon. The boron-to-carbon flux ratio is an important input for understanding cosmic-ray propagation. This is because diffusion through the interstellar medium causes an additional softening of the flux of secondary cosmic rays such as boron with respect to primary cosmic rays such as carbon (see “Break in B/C?” figure). The collaboration also recently published the first high-resolution flux measurement of nickel (Z = 28), revealing the element to have a very similar spectrum to iron, suggesting similar acceleration and propagation behaviour.

CALET is also studying the spectra of sub-iron elements, which are poorly known above 10 GeV per nucleon, and ultra-heavy galactic cosmic rays such as zinc (Z = 30), which are quite rare. CALET studies abundances up to Z = 40 using a special trigger with a large acceptance, so far revealing an excellent match with previous measurements from ACE-CRIS (a satellite-based detector), SuperTIGER (a balloon-borne detector) and HEAO-3 (a satellite-based detector decommissioned in the 1980s). Ultra-heavy galactic cosmic rays provide insights into cosmic-ray production and acceleration in some of the most energetic processes in our galaxy, such as supernovae and binary-neutron-star mergers.

Gravitational-wave counterparts

In addition to charged particles, CALET can detect gamma rays with energies between 1 GeV and 10 TeV, and study the diffuse photon background as well as individual sources. To study electromagnetic transients related to complex phenomena such as gamma-ray bursts and neutron-star mergers, CALET is equipped with a dedicated monitor that to date has detected more than 300 gamma-ray bursts, 10% of which are short bursts in the energy range 7 keV to 20 MeV. The search for electromagnetic counterparts to gravitational waves proceeds around the clock by following alerts from LIGO, VIRGO and KAGRA. No X-ray or gamma-ray counterparts to gravitational waves have been detected so far.

CALET measurements of the boron to carbon flux ratio

On the low-energy side of cosmic-ray spectra, CALET has contributed a thorough study of the effect of solar activity on galactic cosmic rays, revealing charge dependence on the polarity of the Sun’s magnetic field due to the different paths taken by electrons and protons in the heliosphere. The instrument’s large-area charge detector has also proven to be ideal for space-weather studies of relativistic electron precipitation from the Van Allen belts in Earth’s magnetosphere.

The spectacular recent experimental advances in cosmic-ray research, and the powerful theoretical efforts that they are driving, are moving us closer to a solution to the century-old puzzle of cosmic rays. With more than four billion cosmic rays observed so far, and a planned extension of the mission to the nominal end of ISS operativity in 2030, CALET is expected to continue its campaign of direct measurements in space, contributing sharper and perhaps unexpected pictures of their complex phenomenology.

Further reading

CALET Collab. 2023 Phys. Rev. Lett. 131 191001 and 2022 Phys. Rev. Lett. 129 101102.

DAMPE Collab. 2017 Nature 552 63 and 2019 Sci. Adv. 5 9.

AMS-02 Collab. 2015 Phys. Rev. Lett. 114 171103.

PAMELA Collab. 2011 Science 332 69.

bright-rec iop pub iop-science physcis connect