Topics

A rich harvest of results in Prague

20 November 2024
Monica Dunford
Beginning of the journey Monica Dunford (Heidelberg University) explains that the best of the LHC is yet to come. Credit: J Kvita and R Volfik

The 42nd international conference on high-energy physics (ICHEP) attracted almost 1400 participants to Prague in July. Expectations were high, with the field on the threshold of a defining moment, and ICHEP did not disappoint. A wealth of new results showed significant progress across all areas of high-energy physics.

With the long shutdown on the horizon, the third run of the LHC is progressing in earnest. Its high-availability operation and mastery of operational risks were highly praised. Run 3 data is of immense importance as it will be the dataset that experiments will work with for the next decade. With the newly collected data at 13.6 TeV, the LHC experiments showed new measurements of Higgs and di-electroweak-boson production, though of course most of the LHC results were based on the Run 2 (2014 to 2018) dataset, which is by now impeccably well calibrated and understood. This also allowed ATLAS and CMS to bring in-depth improvements to reconstruction algorithms.

AI algorithms

A highlight of the conference was the improvements brought by state-of-the-art artificial-intelligence algorithms such as graph neural networks, both at the trigger and reconstruction level. A striking example of this is the ATLAS and CMS flavour-tagging algorithms, which have improved their rejection of light jets by a factor of up to four. This has important consequences. Two outstanding examples are: di-Higgs-boson production, which is fundamental for the measurement of the Higgs boson self-coupling (CERN Courier July/August 2024 p7); and the Higgs boson’s Yukawa coupling to charm quarks. Di-Higgs-boson production should be independently observable by both general-purpose experiments at the HL-LHC, and an observation of the Higgs boson’s coupling to charm quarks is getting closer to being within reach.

The LHC experiments continue to push the limits of precision at hadron colliders. CMS and LHCb presented new measurements of the weak mixing angle. The per-mille precision reached is close to that of LEP and SLD measurements (CERN Courier September/October 2024 p29). ATLAS presented the most precise measurement to date (0.8%) of the strong coupling constant extracted from the measurement of the transverse momentum differential cross section of Drell–Yan Z-boson production. LHCb provided a comprehensive analysis of the B0→ K0* μ+μ angular distributions, which had previously presented discrepancies at the level of 3σ. Taking into account long-distance contributions significantly weakens the tension down to 2.1σ.

Pioneering the highest luminosities ever reached at colliders (setting a record at 4.7 × 1034 cm–2 s–1), SuperKEKB has been facing challenging conditions with repeated sudden beam losses. This is currently an obstacle to further progress to higher luminosities. Possible causes have been identified and are currently under investigation. Meanwhile, with the already substantial data set collected so far, the Belle II experiment has produced a host of new results. In addition to improved CKM angle measurements (alongside LHCb), in particular of the γ angle, Belle II (alongside BaBar) presented interesting new insights in the long standing |Vcb| and |Vub| inclusive versus exclusive measurements puzzle (CERN Courier July/August 2024 p30), with new |Vcb| exclusive measurements that significantly reduce the previous 3σ tension.

Maurizio Pierini

ATLAS and CMS furthered their systematic journey in the search for new phenomena to leave no stone unturned at the energy frontier, with 20 new results presented at the conference. This landmark outcome of the LHC puts further pressure on the naturalness paradigm.

A highlight of the conference was the overall progress in neutrino physics. Accelerator-based experiments NOvA and T2K presented a first combined measurement of the mass difference, neutrino mixing and CP parameters. Neutrino telescopes IceCube with DeepCore and KM3NeT with ORCA (Oscillation Research with Cosmics in the Abyss) also presented results with impressive precision. Neutrino physics is now at the dawn of a bright new era of precision with the next-generation accelerator-based long baseline experiments DUNE and Hyper Kamiokande, the upgrade of DeepCore, the completion of ORCA and the medium baseline JUNO experiment. These experiments will bring definitive conclusions on the measurement of the CP phase in the neutrino sector and the neutrino mass hierarchy – two of the outstanding goals in the field.

The KATRIN experiment presented a new upper limit on the effective electron–anti-neutrino mass of 0.45 eV, well en route towards their ultimate sensitivity of 0.2 eV. Neutrinoless double-beta-decay search experiments KamLAND-Zen and LEGEND-200 presented limits on the effective neutrino mass of approximately 100 meV; the sensitivity of the next-generation experiments LEGEND-1T, KamLAND-Zen-1T and nEXO should reach 20 meV and either fully exclude the inverted ordering hypothesis or discover this long-sought process. Progress on the reactor neutrino anomaly was reported, with recent fission data suggesting that the fluxes are overestimated, thus weakening the significance of the anti-neutrino deficits.

Neutrinos were also a highlight for direct-dark-matter experiments as Xenon announced the observation of nuclear recoil events from8B solar neutrino coherent elastic scattering on nuclei, thus signalling that experiments are now reaching the neutrino fog. The conference also highlighted the considerable progress across the board on the roadmap laid out by Kathryn Zurek at the conference to search for dark matter in an extraordinarily large range of possibilities, spanning 89 orders of magnitude in mass from 10–23 eV to 1057 GeV. The roadmap includes cosmological and astrophysical observations, broad searches at the energy and intensity frontier, direct searches at low masses to cover relic abundance motivated scenarios, building a suite of axion searches, and pursuing indirect-detection experiments.

Lia Merminga and Fabiola Gianotti

Neutrinos also made the headlines in multi-messenger astrophysics experiments with the announcement by the KM3Net ARCA (Astroparticle Research with Cosmics in the Abyss) collaboration of a muon-neutrino event that could be the most energetic ever found. The energy of the muon from the interaction of the neutrino is compatible with having an energy of approximately 100 PeV, thus opening a fascinating window on astrophysical processes at energies well beyond the reach of colliders. The conference showed that we are now well within the era of multi-messenger astrophysics, via beautiful neutrinos, gamma rays and gravitational-wave results.

The conference saw new bridges across fields being built. The birth of collider-neutrino physics with the beautiful results from FASERν and SND fill the missing gap in neutrino–nucleon cross sections between accelerator neutrinos and neutrino astronomy. ALICE and LHCb presented new results on He3 production that complement the AMS results. Astrophysical He3 could signal the annihilation of dark matter. ALICE also presented a broad, comprehensive review of the progress in understanding strongly interacting matter at extreme energy densities.

The highlight in the field of observational cosmology was the recent data from DESI, the Dark Energy Spectroscopic Instrument in operation since 2021, which bring splendid new data on baryon acoustic oscillation measurements. These precious new data agree with previous indirect measurements of the Hubble constant, keeping the tension with direct measurements in excess of 2.5σ. In combination with CMB measurements, the DESI measurements also set an upper limit on the sum of neutrino masses at 0.072 eV, in tension with the inverted ordering of neutrino masses hypothesis. This limit is dependent on the cosmological model.

In everyone’s mind at the conference, and indeed across the domain of high-energy physics, it is clear that the field is at a defining moment in its history: we will soon have to decide what new flagship project to build. To this end, the conference organised a thrilling panel discussion featuring the directors of all the major laboratories in the world. “We need to continue to be bold and ambitious and dream big,” said Fermilab’s Lia Merminga, summarising the spirit of the discussion.

“As we have seen at this conference, the field is extremely vibrant and exciting,” said CERN’s Fabiola Gianotti at the conclusion of the panel. In these defining times for the future of our field, ICHEP 2024 was an important success. The progress in all areas is remarkable and manifest through the outstanding number of beautiful new results shown at the conference.

bright-rec iop pub iop-science physcis connect