The Future Circular Collider (FCC) offers a multi-stage facility – beginning with an e+e– Higgs and electroweak factory (FCC-ee), followed by an energy-frontier hadron collider (FCC-hh) in the same 91 km tunnel – that would operate until at least the end of the century. Following the recommendation of the 2020 update of the European strategy for particle physics, CERN together with its international partners have launched a feasibility study that is due to be completed in 2025. FCC Week 2023, which took place in London from 5 to 9 June, and attracted about 500 people, offered an excellent opportunity to strengthen the collaboration, discuss the technological and scientific opportunities, and plan the submission of the mid-term review of the FCC feasibility study to the CERN Council later this year.
The FCC study, along with the support of the European Union FCCIS project, aims to build an ecosystem of science and technology involving fundamental research, computing, engineering and skills for the next generation. It was therefore encouraging that around 40% of FCC Week participants were aged under 40.
Working together
In his welcome speech, Mark Thomson (UK STFC executive chair) stressed the importance of a Higgs factory as the next tool in exploring the universe at a fundamental level. Indeed, one of the no-lose theorems of the FCC programme, pointed out by Gavin Salam (University of Oxford), is that it will shed light on the Higgs’ self-interaction, which governs the shape of the Brout–Englert–Higgs potential. In her plenary address, Fabiola Gianotti (CERN Director-General) confirmed that the current schedule for the completion of the FCC feasibility study is on track, and stressed that the FCC is the only facility commensurate with the present size of CERN’s community, providing up to four experimental points, concluding “we need to work together to make it happen”.
Designing a new accelerator infrastructure poses a number of challenges, from civil engineering and geodesy to the development of accelerator technologies and detector concepts to meet the physics goals. One of the major achievements of the feasibility study so far is the development of a new FCC layout and placement scenario, thanks to close collaboration with CERN’s host states and external consultants. As Johannes Gutleber (CERN) reported, the baseline scenario has been communicated with the affected communes in the surrounding area and work has begun to analyse environmental aspects at the surface-site locations. Synergies with the local communities will be strengthened during the next two years, while an authorisation process has been launched to start geophysical investigations next year.
Essential for constructing the FCC tunnel is a robust 3D geological model, for which further input from subsurface investigations into areas of geological uncertainty is needed. On the civil-engineering side, two further challenges include alignment and geodesy for the new tunnel. Results from these investigations will be collected and fed into the civil-engineering cost and schedule update of the project. Efforts are also focusing on optimising cavern sizes, tunnel widenings and shaft diameters based on more refined requirements from users.
Transfer lines have been optimised such that existing tunnels can be reused as much as possible and to ensure compatibility between the lepton and hadron FCC phases. Taking CERN’s full experimental programme into account, the option of using the SPS as pre-booster for FCC-ee will be consolidated and compared with the cost with a high-energy linac option.
A new generation of young researchers will need to take the reins to ensure FCC gets delivered and exploit the physics opportunities offered by this visionary research infrastructure
At the heart of the FCC study are sustainability and environmental impact. Profiting from an R&D programme on high-efficiency klystrons initially launched for the proposed Compact Linear Collider, the goal is to increase the FCC-ee klystron efficiency from 57% (as demonstrated in the first prototypes) to 80% – resulting in an energy saving of 300 GWh per year without considering the impact that this development could have beyond particle physics. Other accelerator components where work is ongoing to minimise energy consumption include low-loss magnets, SRF cavities and high-efficiency cryogenic compressors.
The FCC collaboration is also exploring ways in which to reuse large volumes of excavated materials, including the potential for carbon capture. This effort, which builds on the results of the EU-funded “Mining the Future” competition launched in 2020, aims to re-use the excavated material locally for agriculture and reforestation while minimising global nuisances such as transport. Other discussions during FCC Week focused on the development of a renewable energy supply for FCC-ee.
If approved, a new generation of young researchers will need to take the reins to ensure FCC gets delivered and exploit the physics opportunities offered by this visionary research infrastructure. A dedicated early-career researcher session at FCC Week gave participants the chance to discuss their hopes, fears and experiences so far with the FCC project. A well-attended public event “Giant Experiments, Cosmic Questions” held at the Royal Society and hosted by the BBC’s Robin Ince also reflected the enthusiasm of non-physicists for fundamental exploration.
The highly positive atmosphere of FCC Week 2023 projected a strong sense of momentum within the community. The coming months will keep the FCC team extremely busy, with several new institutes expected to join the collaboration and with the scheduled submission of the feasibility-study mid-term review advancing fast ahead of its completion in 2025.