Topics

Technology Meets Research: 60 Years of CERN Technology, Selected Highlights

19 April 2018

By Christian Fabjan, Thomas Taylor, Daniel Treille and Horst Wenninger (eds.)
World Scientific

Technology Meets Research: 60 Years of CERN Technology, Selected Highlights

This book, the 27th volume in the “Advanced Series on Directions in High Energy Physics”, presents a robust and accessible summary of 60 years of technological development at CERN. Over this period, the foundations of today’s understanding of matter, its fundamental constituents and the forces that govern its behaviour were laid and, piece by piece, the Standard Model of particle physics was established. All this was possible thanks to spectacular advances in the field of particle accelerators and detectors, which are the focus of this volume. Each of the 12 chapters is built using contributions from the physicists and engineers who played key roles in this great scientific endeavour.

After a brief historical introduction, the story starts with the Synchrocyclotron (SC), CERN’s first accelerator, which allowed – among other things – innovative experiments on pion decay and a measurement of the anomalous magnetic dipole moment of the muon. While the SC was a development of techniques employed elsewhere, the Proton Synchroton (PS), the second accelerator constructed at CERN and now the cornerstone of the laboratory’s accelerator complex, was built using the new and “disruptive” strong-focusing technique. Fast extraction from the PS combined with the van der Meer focussing horn were key to the success of a number of experiments with bubble chambers and, in particular, to the discovery of the weak neutral current using the large heavy-liquid bubble chamber Gargamelle.

The book goes on to present the technological developments that led to the discovery of the Higgs boson by the ATLAS and CMS collaborations at the LHC, and the study of heavy-quark physics as a means to understand the dynamics of flavour and the search for phenomena not described by the SM. The taut framework that the SM provides is evident in the concise reviews of the experimental programme of LEP: the exquisitely precise measurements of the properties of the W and Z bosons, as well as of the quarks and the leptons – made by the ALEPH, DELPHI, OPAL and L3 experiments – were used to demonstrate the internal consistency of the SM and to correctly predict the mass of the Higgs boson. An intriguing insight into the breadth of expertise required to deliver this programme is given by the discussion of the construction of the LEP/LHC tunnel, where the alignment requirements were such that the geodesy needed to account for local variations in the gravitational potential and measurements were verified by observations of the stars.

The rich scientific programme of the LHC and of LEP before it have their roots in the systematic development of the accelerator and detector techniques. The accelerator complex at CERN has grown out of the SC.

The book concisely presents the painstaking work required to deliver the PS, the Intersecting Storage Rings (ISR) and the Super Proton Synchrotron (SPS). Experimentation at these facilities established the quark-parton model and quantum chromodynamics (QCD), demonstrated the existence of charged and neutral weak currents, and pointed out weaknesses in our understanding of the structure of the nucleon and the nucleus. The building of the SPS was expedited by the decision to use single-function magnets that enabled a staged approach to its construction. The description of the technological innovations that were required to realise the SPS includes the need for a distributed, user-friendly control-and-monitoring system. A novel solution was adopted that exploited an early implementation of a local-area network and for which a new, interpretative programming language was developed.

The book also describes the introduction of the new isotope separation online technique, which allows highly unstable nuclei to be studied, and its evolution into research on nuclear matter in extreme conditions at ISOLDE and its upgrades. The study of heavy-ion collisions in fixed target experiments at the SPS collider and now in the ALICE experiment at the LHC, has its roots in the early nuclear-physics programme as well. The SC, and later the PS, were ideal tools to create the intense low-energy beams used to test fundamental symmetries, to search for rare decays of hadrons and leptons, and to measure the parameters of the SM.

Reading this chronicle of CERN’s outstanding record, I was struck by its extraordinary pedigree of innovation in accelerator and detector technology. Among the many examples of groundbreaking innovation discussed in the book is the construction of the ISR which, by colliding beams head on, opened the path to today’s energy

frontier. The ISR programme created the conditions for pioneering developments such as the multi-wire proportional chamber, and the transition radiation detector as well as large-acceptance magnetic spectrometers for colliding-beam experiments. Many of the technologies that underpin the success of the proton–antiproton (Spp S) collider, LEP and the LHC, were innovations pioneered at the ISR. For example, the discovery of the W and Z bosons at the Spp S relied on the demonstration of stochastic cooling and antiproton accumulation. The development of these techniques allowed CERN to establish its antiproton programme, which encompassed the search for new phenomena at the energy frontier, as well as the study of discrete symmetries using neutral kaons at CPLEAR and the detailed study of the properties of antimatter.

The volume includes contributions on the development of the computing, data-handling and networking systems necessary to maximise the scientific output of the accelerator and detector facilities. From the digitisation and handling of bubble- and spark-chamber images in the SC era, to the distributed processing possible on the worldwide LHC computing grid, the CERN community has always developed imaginative solutions to its data-processing needs.

The book concludes with thoughtful chapters that describe the impact on society of the technological innovations driven by the CERN programme, the science and art of managing large, technologically challenging and internationally collaborative projects, and a discussion of the R&D programme required to secure the next 60 years of discovery.

The contributions from leading scientists of the day collected in this relatively slim book document CERN’s 60-year voyage of innovation and discovery, the repercussions of which vindicate the vision of those who drove the foundation of the laboratory – European in constitution, but global in impact. The spirit of inclusive collaboration, which was a key element of the original vision for the laboratory, together with the aim of technical innovation and scientific excellence, are reflected in each of the articles in this unique volume.

bright-rec iop pub iop-science physcis connect