Topics

Numerical Relativity: 100 Years of General Relativity – Vol. 1

12 February 2016

By M Shibata
World Scientific

51uYR7wPNuL

Numerical relativity is a field of theoretical physics in which Einstein’s equation and associated matter field equations are solved using computer calculations, because they are nonlinear partial-differential equations and therefore they cannot be solved analytically for general problems.

The purpose of this volume is to describe the techniques of numerical relativity and to report the knowledge obtained from the numerical simulations performed so far. The first chapter offers an overview of the basics of general relativity, gravitational waves and relativistic astrophysics, which are the background of numerical relativity. Then, in the first part of the book (chapters 2 to 7), the author discusses the most used formulations and numerical methods, while in the second part (chapters 8 to 11), he reports on representative numerical-relativity simulations and the knowledge derived from them.

Particular importance is given to the results obtained by applying these simulation techniques to the study of black-hole formation, binary compact objects, and the merger of binary neutron stars and black holes. New frontiers in numerical relativity are also touched on in the last two chapters.

bright-rec iop pub iop-science physcis connect