By Stephen C Rand
Oxford University Press
The aim of this book is to bridge the gap between introductory quantum mechanics and the most recent advances in modern optics.
The author opts for an unconventional approach. Rather than providing an exhaustive treatment, he introduces a single analytic tool – the density matrix – to analyse complex optical phenomena and applies it to a wide range of problems. Among the many mathematical tools available to treat nonlinear and quantum optics, he chooses the density matrix because it is extremely versatile and applicable virtually to any problem. In particular, it is well suited for dealing with coherence in isolated or interactive systems, and allows researchers to ignore parts of a problem that appear irrelevant.
After covering the basics, the book quickly passes to more sophisticated topics. It starts with the simplest systems (stationary two-level atoms) and then introduces atomic motion and additional energy levels, and continues with a discussion of coherence effects effects (of first-, second- and third-order).
Finally, a section is dedicated to selected examples from recent research topics in which the use of the density matrix is profitable, including laser tweezers, laser cooling, coherent population trapping and transfer, optical magnetism, electromagnetically induced transparency, squeezed light and quantum information processing.
The text is based on two decades of lectures and is oriented to graduate students not only of traditional disciplines such as physics, chemistry, electrical engineering and materials science, but also of interdisciplinary courses such as biophysics, biomedicine and photochemistry.
In this second revised edition, new sections on quantum interference, Fano resonances, optical magnetism, quantum computation, laser cooling of solids, and irreducible representation of magnetic interactions have been included, along with more than 40 new problems.