By Ta-Pei Cheng
Oxford University Press
Hardback: £29.99
Also available as an e-book
Being familiar with the work of Ta-Pei Cheng, I started this book with considerable expectations – and I enjoyed the first two sections. I found many delightful discussions of topics in the physics that came after Albert Einstein, as well as an instructive discussion on his contributions to quantum theory, where the author shares Einstein’s reservations about quantum mechanics. However, the remainder of the text dedicated to relativity and related disciplines has problems. The two pivotal issues of special relativity, the aether and the proper time, provide examples of what I mean.
On p140, the author writes “…keep firmly in mind that Einstein was writing for a community of physicists who were deeply inculcated in the aether theoretical framework”, and continues “(Einstein, 1905) was precisely advocating that the whole concept of aether should be abolished”. Of course, Einstein was himself a member of the community “inculcated in the aether” and, indeed, aether was central in his contemplation of the form and meaning of physical laws. His position was cemented by the publication in 1920 of a public address on “Aether and the Theory of Relativity” and its final paragraph “…there exists an aether. According to the general theory of relativity space without aether is unthinkable; for in such space there not only would be no propagation of light, but also no possibility of existence for standards of space and time…”. This view superseded the one expressed in 1905, yet that is where the discussion in the book ends.
The last paragraph on p141 states that “…the key idea of special relativity is the new conception of time.” Einstein is generally credited with the pivotal discovery of “body time”, or in Hermann Minkowski’s terminology, a body’s “proper time”. The central element of special relativity is the understanding of the invariant proper time. Bits and pieces of “time” appear in sections 9–12 of the book, but the term “proper time” is mentioned only incidentally. Then on p152 I read “A moving clock appears to run slow.” This is repeated on p191, with the addition “appears to this observer”. However, the word “appears” cannot be part of an unambiguous explanation. A student of Einstein’s physics would say “A clock attached to a material body will measure a proper-time lifespan independent of the state of inertial motion of the body. This proper time is the same as laboratory time only for bodies that remain always at rest in the laboratory.” That said, I must add that I have never heard of doubts about the reality of time dilation, which is verified when unstable particles are observed.
Once the book progresses into a discussion of Riemannian geometry and, ultimately, of general relativity, gauge theories and higher-dimensional Kaluza–Klein unification, it works through modern topics of only marginal connection to Einstein’s physics. However, I am stunned by several comments about Einstein. On p223, the author explains how “inept” Einstein’s long proof of general relativity was, and instead of praise for Einstein’s persistence, which ultimately led him to the right formulation of general relativity, we read about “erroneous detours”. On p293, the section on “Einstein and mathematics” concludes with a paragraph that explains the author’s view as to why “…Einstein had not made more advances…”. Finally, near the end, the author writes on p327 that Einstein “could possibly have made more progress had he been as great a mathematician as he was a great physicist”. This is a stinging criticism of someone who did so much, for things he did not do.
The book presents historical context and dates, but the dates of Einstein’s birth and death are found only in the index entry “Einstein”, and there is little more about him to be found in the text. A listing of 30 cited papers appears in appendix B1 and includes only three papers published after 1918. The book addresses mainly the academic work of Einstein’s first 15 years, 1902–1917, but I have read masterful papers that he wrote during the following 35 years, such as “Solution of the field of a star in an expanding universe” (Einstein and Straus 1945 Rev. Mod. Phys. 17 120 and 1946 Rev. Mod. Phys. 18 148).
I would strongly discourage the target group – undergraduate students and their lecturers – from using this book, because in the part on special relativity the harm far exceeds the good. To experts, I recommend Einstein’s original papers.