Topics

Charm production in proton–lead collisions

5 July 2023

A report from the LHCb experiment.

LHCb figure 1

A crucial missing piece in our understanding of quantum chromodynamics (QCD) is a complete description of hadronisation in hard scattering processes with a large momentum transfer, which has now been investigated by the LHCb collaboration in proton–lead (pPb) collisions. While perturbative QCD describes reasonably well the transverse momentum (pT) dependence of heavy-quark production in proton–proton (pp) collisions, the situation is different in heavy-ion collisions due to the formation of quark–gluon plasma (QGP), which affects the behaviour of particles traversing the medium. In particular, hadronisation can be affected, modifying the relative abundance of hadrons compared to pp collisions. Several models predict an enhanced strange-quark production. Thus an abundance of strange baryons is seen as a signature of QGP formation.

The role that QGP may play in pPb collisions is currently unclear. Some models predict the formation of “QGP droplets”, which could partially induce the same behaviour, albeit less pronounced, as in PbPb collisions. In addition, in pPb interactions, “cold nuclear matter” (CNM) effects are also present that can mimic the behaviour caused by QGP but via different mechanisms. For all these reasons, a strangeness enhancement in pPb collisions would strongly indicate the formation of a deconfined medium in small systems, providing crucial information about QGP properties and formation once the CNM effects are under control.

The LHCb collaboration recently analysed pPb data for QGP effects with the twofold purpose of searching for strangeness enhancement and providing a precise understanding of the CNM effects. This search was performed by measuring the production ratio of the strange baryon Ξ+c, which has never been observed in pPb collisions before, to the strangeless baryon Λ+c. Using an earlier pPb sample, LHCb has also studied the ratios of the D+s, D+ and D0 , the first being measured for the first time down to zero pT in the forward region, precisely addressing CNM effects. All measurements are performed differentially in pT and the rapidity of the produced particle, and compared to the latest theory predictions. The Ξ+c cross section has been measured for the first time in pPb collisions, giving strong indications on the factorisation scale μ0 of the theory model. This result allows to set the absolute scale of the theoretical computations in terms of strangeness production, a trend confirmed with even higher precision by comparing the measurement to the Λ+c production-cross section evaluated in the same decay mode. Moreover, the ratio is roughly constant as a function of pT  and behaves in the same way at positive (pPb) and negative (Pbp) rapidities (see figure 1). The measurement is consistent with models incorporating initial-state effects due to gluon-shadowing in nuclei, suggesting that QGP formation and the resulting strangeness enhancement have little or no effect on Ξ+c production in pPb collisions.

This interpretation is confirmed by the measurement of the D+s, D+ and D0 cross sections and corresponding ratios in different rapidity regions. While the ratios show little enhancement within the statistical uncertainty, a large asymmetry is observed in the forward-backward production. This strongly indicates CNM effects and provides detailed constraints on models of nuclear parton distribution functions and hadron production in a very wide range of Bjorken-x (10–2 – 10–5). A strong suppression is observed for the D mesons, giving insight into the nature of the CNM effects involved. An explanation via additional final-state effects is challenged by the Ξ+c data that are well described by models not including them. The production ratios of Ξ+c, D+s, D+ and D0 measured as a function of pT in pPb collisions confirm these findings. All these studies will profit from the increased statistics in pPb collisions that are expected from future LHC runs.

Further reading

LHCb Collab. 2023 arXiv: 2305.06711.
LHCb Collab. 2023 LHCb-PAPER-2023-006.

bright-rec iop pub iop-science physcis connect