Topics

The Quantum Story

19 July 2011

By Jim Baggott

Oxford University Press

Hardback: £16.99 $29.99

CCboo1_06_11

The Quantum Story provides a detailed “biography” of the 111-year-old quantum physics, from its birth with Planck’s quantum of action all of the way up to superstrings, loop quantum gravity and the start of the LHC – a machine that is expected to put physics back on the right track, with experimental measurements forcing some “figments of the theoretical mind” to confront reality.

The first chapters are simply delicious and ideally suited for summer reading on a sunny, late afternoon with a fresh drink close by. I was pleased to revisit most of the stories and characters I met as a teenager when reading books by or about Einstein, Bohr, Pauli, Heisenberg, de Broglie, Schrödinger, Dirac and many other universal heroes. Baggott explains the basics and wonders of quantum physics in a surprisingly clear way, despite its intrinsically “unsettling” and “wholly disconcerting” nature. A multitude of advances and a fair share of dead ends are exposed with excitement and suspense, almost as in a detective story, and the pace of the action is such that I was often reminded of Dan Brown’s novels. You begin to wonder if some of the main characters ever slept, such as during the Solvay conference in 1927, when each breakfast time Einstein would attack with a new gedankenexperiment, which Bohr would counter throughout dinnertime in Brussels’ “Hotel Britannique”.

We all know about Einstein’s “year of miracles” when, perhaps inspired by not having a respectable position to lose in the academic world, he revolutionized physics with an incredible succession of amazing papers. It is less known that he also wrote several “unpublished papers”, some of which influenced new and important ideas, such as Born’s probabilistic view of Schrödinger’s wavefunctions, submitted for publication in June 1926. This “hastily written” paper was followed one month later by a second one giving a “more considered” perspective, complemented by a note added to the proofs of the first, mentioning that the probabilities are proportional to the square of the wavefunctions.

Somehow, it had not crossed my mind that even in those days many physicists were in a hurry to get their ideas in print. The “publish or perish” motto has long applied. Pauli submitted a paper deriving Balmer’s formula from matrix quantum mechanics just five days before Dirac did the same; maybe Dirac’s delay was caused by his proverbial perfectionism with clear language. Baggott mentions other notes added by the authors in the proofs of their papers, as when Heisenberg writes that: “Bohr has brought to my attention that I have overlooked essential points in the course of several discussions in this paper [on uncertainties].” Ouch… this must have hurt. It continues: “I owe great thanks to Professor Bohr for sharing with me at an early stage the results of these more recent investigations of his.” The Copenhagen interpretation did not have an easy birth.

The topic of quantum reality strikes back later in the book, in chapters 30 to 35, where the reader needs a higher level of concentration to follow detailed developments regarding the topics of hidden variables, Bell’s and Leggett’s inequalities, entanglement and the surprisingly accurate experimental work recently made in this area. In chapters 18 to 29, the reader learns the crucial steps in the development of quantum field theories, quantum electrodynamics, quantum chromodynamics, quark asymptotic freedom and infrared confinement, the J/Ψ revolution, the discovery of the intermediate vector bosons, etc. This must be the nicest introduction to the Standard Model that I have read so far.

Given the style (and target audience) of the book, the almost complete absence of mathematics is quite understandable and I should say that the author succeeds remarkably well in explaining many leading-edge physics topics without the help of equations. It is true that “modern theoretical physics is filled with dense, impenetrable, complex mathematical structures”, which often obscure the deep meaning of what is being done. Nevertheless, and with the confidence gained after reading the 410 pages of main text plus several end-of-book notes, I dare to express the wish of seeing this book reprinted in a “special illustrated edition” (following the nice examples of Bill Bryson’s A Short History of Nearly Everything and Stephen Hawking’s A Brief History of Time), with more diagrams, pictures and equations.

In summary, this is a truly exceptional book, which I highly recommend. It will be enjoyable reading for many professional physicists as well as for bright high-school students waiting for something to trigger a decision to follow a career in physics.

bright-rec iop pub iop-science physcis connect