Topics

Present at the Creation: The Story of CERN and the Large Hadron Collider

19 July 2011

By Amir D Aczel

Crown

Hardback: £15.73 $25.99

CCboo2_06_11

Mathematician and science writer Amir D Aczel is well known for his factually convincing and captivating story of Fermat’s Last Theorem. His recent book on CERN follows a similar recipe for writing a gripping story: impressions from several visits to the laboratory – notably witnessing the LHC restart from the CERN Control Centre on 5 March 2010 and from the CMS Control Centre earlier in the day – as well as interviewing respective experts and leading physicists, including 13 Nobel laureates.

The story develops in 14 chapters that are illustrated with colour photographs, black-and-white line drawings, photographs and tables. An afterword, notes and a bibliography complete the picture, together with three more “technical” appendices: how an LHC detector works; particles, forces and the Standard Model; and the key physics principles used in the book. Aczel covers the LHC and its potentialities and risks, the four big detectors, symmetries of nature and Yang–Mills theory, the Standard Model, the Higgs particle, string theory, dark matter, dark energy and the fate of the universe. The result is a splendid effort to inform a wider public of CERN’s achievements set in an appropriate context.

As would be expected, Aczel is at his best when explaining mathematical theories such as that of Yang and Mills. Given the breadth of the material covered, it is not surprising that there are some lacunae and even errors. What struck me as an accelerator physicist was the erroneous explanation for the PS Booster synchrotron in the accelerator chain that feeds the LHC, which he attributes to the limited increase of particle velocity in a given synchrotron. In fact, the need for the Booster arose from the luminosity requirements of the Intersecting Storage Rings (and successive storage rings) – that is higher beam intensity and (phase space) densities or, in other words, limited transverse and longitudinal beam emittances. It would have been helpful if Aczel had been able to interview the late Nobel laureate Simon van der Meer.

Altogether, however, it is a book that can be highly recommended to anybody who wants to know “everything” about CERN and who likes a narrative style. I would personally be interested to know how much a complete newcomer understood after a first reading.

bright-rec iop pub iop-science physcis connect