Topics

Theory of Quantum Transport at Nanoscale: An Introduction

13 April 2017

By Dmitry A Ryndyk
Springer

51IDr5vOk+L

This book provides an introduction to the theory of quantum transport at the nanoscale – a rapidly developing field that studies charge, spin and heat transport in nanostructures and nanostructured materials. The theoretical models and methods recollected in the volume are widely used in nano-, molecular- and bio-electronics, as well as in spin-dependent electronics (spintronics).

The book begins by introducing the basic concepts of quantum transport, including the Landauer–Büttiker method; the matrix Green function formalism for coherent transport; tunnelling (transfer) Hamiltonian and master equation methods for tunnelling; Coulomb blockade; and vibrons and polarons.

In the second part of the book, the author gives a general introduction to the non-equilibrium Green function theory, describing first the approach based on the equation-of-motion technique, and then a more sophisticated one based on the Dyson–Keldysh diagrammatic technique. The book focuses in particular on the theoretical methods able to describe the non-equilibrium (at finite voltage) electron transport through interacting nanosystems, specifically the correlation effects due to electron–electron and electron–vibron interactions.

The book would be useful for both masters and PhD students and for researchers or professionals already working in the field of quantum transport theory and nanoscience.

bright-rec iop pub iop-science physcis connect