Welcome to the digital edition of the November/December 2019 issue of CERN Courier.

The Extremely Large Telescope, adorning the cover of this issue, is due to record first light in 2025 and will outperform existing telescopes by orders of magnitude. It is one of several large instruments to look forward to in the decade ahead, which will also see the start of high-luminosity LHC operations. As the 2020s gets under way, the Courier will be reviewing the LHC’s 10-year physics programme so far, as well as charting progress in other domains. In the meantime, enjoy news of KATRIN’s first limit on the neutrino mass (p7), a summary of the recently published European strategy briefing book (p8), the genesis of a hadron-therapy centre in Southeast Europe (p9), and dispatches from the most interesting recent conferences (pp19—23). CLIC’s status and future (p41), the abstract world of gauge–gravity duality (p44), France’s particle-physics origins (p37) and CERN’s open days (p32) are other highlights from this last issue of the decade. Enjoy!

To sign up to the new-issue alert, please visit: http://comms.iop.org/k/iop/cerncourier

To subscribe to the magazine, please visit: https://cerncourier.com/p/about-cern-courier
CAEN continuous R&D efforts are the driving force behind the technology of 725/730 Digitizers, the best seller models selected by many users and experiments Worldwide.

Precise signal reconstruction, advanced zero suppression algorithms, high energy resolution, pulse-shape discrimination and sub-ns timing capabilities... all of these are in 725/730 Digitizers, the ideal solutions for many applications in Physics and Nuclear Engineering.

CAEN Waveform Digitizer Families - VME64, VME64X, NIM, Desktop, Rack

- 8/16 Channel 14-bit 250-500 MS/s Digitizer
- 720/724 Digitizer Family
- 740 Digitizer Family
- 751/781 Digitizer Family
- 742/743 Switched Capacitor Digitizer Family
- R5560/DT5560SE Digitizer Family
- DUMP WAVE
- FIRMWARE
- SOFTWARE
- C and LabVIEW Libraries available for custom developments.
FROM THE EDITOR

Tooling up for the next decade

The 2020s saw two great discoveries in fundamental physics: the Higgs boson in 2012 and gravitational waves in 2016. Both were the product of unique instruments at the limits of technology, built and operated by thousands of people from numerous countries over many years, and both provide rich physics programmes throughout the 2020s. What else lies in store for the decade ahead?

The Extremely Large Telescope, adorning the cover of this issue, is one of several large instruments to look forward to. The product of the six-member-state European Southern Observatory, it is due to record first light in 2025 and will superperform existing telescopes by orders of magnitude (p97). Other facilities to come online in the 2020s include the Deep Underground Neutrino Experiment (DUNE), the European Spallation Source in Sweden, the Facility for Antiproton and Ion Research, the Square Kilometre Array, Cherenkov Telescope Array and ITER.

The fate of an Electron-Ion Collider in the US, Hyper-Kamiokande in Japan and new third-generation gravitational-wave detectors will be sealed, while other projects, such as post-Flanck cosmic-microwave-background detectors, gain momentum.

Dramatic landscape

Ten years ago, on 8 November 2009, having recovered from a major repair, the LHC accelerated its twin beams of protons to an energy of 1.875 TeV and became the world’s highest energy accelerator. Its results dominated particle physics in the 2010s based on only a fraction of its expected total dataset and, from 2016, its high-luminosity upgrade is due to bring an avalanche of new data. One of the big decisions ahead is which collider should follow the LHC, for which the outcomes of the European strategy for particle physics, due in May, are eagerly awaited in Europe and beyond (p8).

The landscape of possible physics beyond the Standard Model has changed dramatically during the past decade, and it is clear that new experimental strategies and theoretical insights are needed. The 2020s will see WIMP-dark matter meet its ultimate test in upgraded and next-generation detectors, including XENON1T, LZ, DarkSide-50, SuperCDMS and DAPWIN, while tooling up for the next decade.

Reporting on international high-energy physics

This year, the CERN Courier has celebrated its 60th anniversary with a clutch of visual highlights (p37), CERN’s open days (p32), and much more. The 2020s will also be a make-or-break time for a clutch of anomalies – including those in the flavour sector, cosmic rays and precision measurements of the muon’s magnetic moment – along with developments in theory. The year, the Courier has celebrated its 66th anniversary with a new design and website, and with a series of retrospective articles that are available online under the section “In focus.” Next year, as the new decade gets under way, we will review the LHC’s physics programme in full, as well as charting progress in other domains. In the meantime, enjoy news of KATRIN’s first limit on the neutrino mass (p97), adiabatic–therapy centres in Southeast Europe (p99), CTA’s status and future (p102), the abstract world of gauge–gravity duality (p94). France’s particle-physics origins (p77), CERN’s open days (p102), and much more.

Are you looking for a perfect vacuum solution? Please contact us: Pfeiffer Vacuum (Schweiz) AG - T +41 44 444 22 55 - F +41 44 444 22 66 - info@pfeiffer-vacuum.ch - www.pfeiffer-vacuum.com

VACUUM SOLUTIONS FROM A SINGLE SOURCE

Pfeiffer Vacuum is proud to have been a supplier of innovative and customized vacuum solutions to the particle accelerator community for more than 50 years. Our complete product portfolio for vacuum technology, our focus on competent and specialized advice supported by robust and reliable service, makes Pfeiffer Vacuum the partner of choice for the analytical and research communities worldwide.
Neutrinos

KATRIN sets new limit on neutrino mass

Based on its first four weeks of running, researchers at the Karlsruhe Tritium Neutrino (KATRIN) experiment in Germany have set a new model-independent bound on the mass of the neutrino. First presented at the international TAUOL conference in Toyama, Japan on 13 September (see p2), the collaboration reported an upper limit of the electron–antineutrino mass of 1.8 eV at 90% confidence, almost halving the previous bound.

Neutrinos are among the least well understood particles in the Standard Model. Their three known mass eigenstates do not match up with the better-known flavour eigenstates, electron, muon and tau, but mix according to the Pontecorvo–Maki–Nakagawa–Sakata matrix, resulting in the flavour transitions seen by neutrino-oscillation experiments. Despite their success in constraining neutrino mixing, such experiments are sensitive only to squared mass differences between the eigenstates, and not to the neutrino masses themselves.

Direct approach

Physicists have pursued direct mass measurements since Reines and Cowan observed electron antineutrinos in inverse beta decay in 1956. The direct mass-measurement methodology hinges on precisely measuring the energy spectrum of beta–decay electrons, and is considered model independent as the extracted neutrino mass depends only on the kinematics of the decay. KATRIN is now the most precise experiment of this kind. It builds on the invention of gaseous molecular tritium sources and spectrometers based on the principle of magnetic atomic resolution in electrostatic sifting. The combination of these methods culminated in the previous best limits of 3.4 eV at 99% confidence in 2005, and 2.05 eV at 95% confidence in 2011, by physicists working in Mainz, Germany and Frascati, Russia, respectively. The KATRIN design improves on these experimental results with systematic uncertainties reduced by a factor of six and statistical uncertainties reduced by a factor of ten.

“These are exciting times for the collaboration,” says KATRIN co-spokesperson Christian Wehrenberg of the University of Münster. “In the area of superconducting magnet expertise, we profited a lot from the know-how of retired CERN experts acting as consultants, while CERN’s ISOLDE facility also assisted with the production of radioactive isotopes.” KATRIN collaborators are now in the midst of a two-month measurement campaign to increase the size of their sample. It will feature a signal–to–background ratio that is expected to be about one order of magnitude better than the initial measurement, due to an increase in source activity and a decrease in background due to hardware upgrades. The goal is to achieve an activity of 50 beta–antineutrino decays per second, while reducing the current background level by about a factor of ten.

Complementary limits

Direct measurements are not the only handle on neutrino mass available to physicists, though they are certainly the most model-independent. Experiments searching for neutrinoless double–beta decay offer a complementary limit, but must assume that the neutrino is a Majorana fermion. The tightest limit on neutrino masses currently comes from cosmology. Combining data from the Planck satellite with simulations of the development of structure in the early universe yields an upper limit on the sum of all three neutrino masses of 0.17 eV at 95% confidence.

“The Planck limit is fairly robust,” says Kopp. “It would be invalidated by a scenario where astrophysical supernovae couple to a new scalar field with a vacuum expectation value that evolves over cosmological timescales. ‘Planck data tell us what neutrinos were like in the early universe,’” he says. “Reducing this by a factor of two, KATRIN lies in testing neutrinos now.”
The Nobel Prize in Physics for 2019 has recognised two independent bodies of work. The first which was quite precise, and the couplings of the Higgs boson to the W and Z and to third-generation fermions and to itself are crucial. The second was awarded to James Peebles of Princeton University for theoretical discoveries in physical cosmology, while the other was shared between Michel Mayor of the University of Geneva and Didier Queloz of the universities of Geneva and Cambridge for the discovery of a new planet orbiting a sun-like star.

Peebles was instrumental in turning cosmology into the precise science it is today, with its ever closer links to collider and particle physics in general. Following the unexpected discovery of the cosmic microwave background (CMB) in 1965, he and others at Princeton used it to support the idea that the universe began in a hot, dense state. While the idea of a “big bang” was already many years old, Peebles paired it with concrete physics processes such as nucleosynthesis and described the role of temperature and density in the formation of structure. With others, he arrived at a model accounting for the density fluctuations in the CMB showing a series of acoustic peaks, which would demonstrate that the universe is geometrically flat and that ordinary matter constitutes just 5% of its total matter and energy content.

The early 1980s, Peebles was the first to consider relativistic “cold” dark matter and its effect on structure formation, and he went on to reintroduce Einstein’s famous cosmological constant - work that underpins today’s Lambda Cold Dark Matter model of cosmology.

Mayor and Queloz’s discovery of an exoplanet orbiting a solar-type star in the Milky Way opened a new field of study. It was Pisces b lies 50 light years away. The pair were able to completely orbit its star. It was spotted by tracking how it and its star orbit around a common centre of gravity: a subtle wobbling seen from Earth whose speed was measured from the starlight’s deviation in the Doppler effect. The problem is that the radial velocities are extremely low. Mayor mounted his first spectrographs on a telescope at the Haute-Provence Observatory near Marseille in 1977, it was only sensitive to velocities above 100 km/s – too high to see a planet pulling on its star. It took almost two decades of work by him and his group to strike success, with doctoral student Queloz tasked with developing new methods to increase the machine’s light sensitivity. Today, more than 4000 exoplanets with a vast variety of sizes, shapes and orbits have been discovered in our galaxy using the radial-velocity method and the newer technique of transit photometry, challenging ideas about planetary formation.

Hadron therapy makes headway in Southeast Europe

A state-of-the-art facility for hadron therapy named ESI, has completed its conceptual design phase, following financial support from the European Union and Austria. The facility meeting held on 18 September in Budva, Montenegro, more than 120 people met to discuss the future South East European Initiative for Sustainable Technologies (SEEIST) and the development of hadron therapy, with IIST’s newly formed intergovernmental platform for the approval of the CERN Council in May 2019 in Budapest, Hungary.

The next steps are to prepare a definite design phase, following financial support from the European Union and Austria. The facility meeting held on 18 September in Budva, Montenegro, more than 120 people met to discuss the future South East European Initiative for Sustainable Technologies (SEEIST) and the development of hadron therapy, with IIST’s newly formed intergovernmental platform for the approval of the CERN Council in May 2019 in Budapest, Hungary.

SEESIST aims to create a platform for internationally competitive research in the spirit of the CERN model “science for peace”

The next steps are to define a preparatory design for the facility and to define the conditions for the site selection. Says Damjanović: “It will go well, considering that already the idea was presented, with first patient treatment in 2023.”
Particle physicists challenge EC rebranding
An open letter addressed to the presidents of the European Parliament and the European Commission (EC) demanding better recognition for education and research has attracted more than 13,000 signatures. Prepared by a group of eight prominent particle physicists in Europe – Siegfried Rithake (MIP for Physics, IBC, Nora Brambilla (TU-München), Aldo Deandra (U-Lyon 1), Carlo Guaraldo (INFN Frascati), Luciano Maiani (U-Roma La Sapienza).}

On 10 October CERN welcomed the Republic of Croatia as an Associate Member State, following an official notification that CERN has completed its internal approval procedures in respect of an agreement signed in 2019. “It is a great pleasure to welcome Croatia into the CERN family as an associate member. Croatian scientists have made important contributions to a large variety of experiments at CERN for almost four decades, and as an associate member, new opportunities open up for Croatia in scientific collaboration, technological development, education and training,” said CERN Director-General Fabiola Gianotti.

Researchers from Croatia have contributed to many experiments at CERN, and a cooperation agreement concluded on 10 October for the delivery of a high-performance supercomputer to the CERN Computing Centre.

The team has no clear explanation of what causes such extreme periodic behaviour. All galaxies are thought to contain a super-massive black hole (SMBH) at their centre, one of which was famously pictured for the first time by the Event Horizon Telescope collaboration in 2019 (CERN Courier May/June 2019). Both the sizes and activities of such SMBHs differ significantly from galaxy to galaxy: some galaxies contain an almost dormant black hole at their centre, while in others the SMBH accumulates surrounding matter at a rate high enough for bright emissions with energies ranging from the radio to the X-ray regime. While solar-mass black holes can show dramatic variations in their emission on the time scale of seconds or even hours, such time scales increase with size, meaning that for an SMBH one would not expect much change during years or even centuries. However, observations during the past decade have revealed sudden increases. In 2010 the X-ray emission from a galaxy called GSN 069, which has a relatively small SMBH (100,000 solar masses), became 240 times brighter compared to observations in 1989 – turning it into an active galaxy. In such objects the matter falling into the central SMBH releases radiation when it approaches the event horizon (the boundary beyond which nothing can escape the black hole’s gravitational pull). The brightness of emissions typically varies randomly on short time scales as the SMBH feeds on the surrounding disk of matter, a result of changes in magnetic /f_i eld R e a c h n e w h e i g h t s
The Metrolab PT2026 sets a new standard for precision magnetometers. Leveraging 30 years of expertise building and probe placement, as well as greatly improved time (ks)

Cyclic emission. The XMM-Newton satellite data showing a burst every nine hours. In the accretion rate and turbulence in the disk. But subsequent observations with the European Space Agency’s X-ray satellite XMM-Newton in 2018 revealed never-before-seen behaviour. The object emitted strong bursts of X-rays lasting about one hour. Even more surprising was that the bursts occurred at very persistent intervals of nine hours. Follow-up observations in 2019 with both XMM-Newton and NASA’s Chandra X-ray telescope have now confirmed this picture. While simultaneous observations at radio wavelengths showed no variability, the intensity of the bursts at X-ray wavelengths decreased. An extrapolation of this decrease indicates that, by now, the bursts should have fully disappeared, although further observations are needed to confirm this. The team behind the latest obser- vations, published in Nature, has no clear explanation of what causes such extreme periodic behaviour in such a massive object. One possibility, the team explained, is that the system in this object is too small and rapidly rotating to support such periodic activity; another is that the object is a hybrid, with a supermassive black hole orbiting a smaller, more compact object.

The team behind the latest observation, published in Nature, has no clear explanation of what causes such extreme periodic behaviour in such a massive object. One possibility, the team explained, is that the system in this object is too small and rapidly rotating to support such periodic activity; another is that the object is a hybrid, with a supermassive black hole orbiting a smaller, more compact object.

The team behind the latest observation, published in Nature, has no clear explanation of what causes such extreme periodic behaviour in such a massive object. One possibility, the team explained, is that the system in this object is too small and rapidly rotating to support such periodic activity; another is that the object is a hybrid, with a supermassive black hole orbiting a smaller, more compact object.

The team behind the latest observation, published in Nature, has no clear explanation of what causes such extreme periodic behaviour in such a massive object. One possibility, the team explained, is that the system in this object is too small and rapidly rotating to support such periodic activity; another is that the object is a hybrid, with a supermassive black hole orbiting a smaller, more compact object.
Best Cyclotron Systems

Best Cyclotron Systems provides 15/20/25/30/35/70 MeV Proton Cyclotrons as well as 35 & 70 MeV Multi-Particle (Alpha, Deuteron & Proton) Cyclotrons

- Currents from 100uA to 1000uA (or higher) depending on the particle beam are available on all BCS cyclotrons
- Best 20u to 35u and 30u to 35 are fully upgradeable on site

Best

Molecular Imaging

The BG-75 Biomarker Generator is a revolutionary development in radio-pharmaceutical production that delivers a single or batch dose of 18F-FDG, and additional advanced 18F biomarkers on demand.

The system provides integration of all components to identify PET biomarkers into a single, self-contained system that occupies a fraction of the space required by conventional solutions, simplifying the implementation of PET.

Best

Molecular Imaging

400 MeV Rapid Cycling Medical Synchrotron for Proton-to-Carbon Heavy Ion Therapy:

- Intrinsically small beams facilitating beam delivery with precision
- Small beam sizes – small magnets, light gantries – smaller footprint
- Highly efficient single turn extraction
- Efficient extraction – less shielding
- Flexibility – heavy ion beam therapy (protons and/or carbon), beam delivery modalities

Best

Particle Therapy

Model prediction of 8.4×10^{-9} CERN has recorded the first tracks in a novel prototype for the international Deep Underwater Neutrino Experiment (DUNE) in the US. If successful, the "dual-phase" technology will be used alongside more traditional single-phase detectors to significantly amplify the faint signals created by neutrinos interacting in large volumes of liquid argon (LAr).

Unlike the single-phase DUNE scheme demonstrated on a large scale at CERN in 2011, where wire planes and photomultipliers submerged in LAr detected signals caused by charged particles from neutrino interactions, dual-phase technology uses an additional layer of gaseous argon above the LAr volume to better detect the weak signals before they arrive at the sensors, lowering the energy threshold of the detector. Another advantage is that it is easier to access the cryogenic front-end electronics, which can be reduced from 100 to 10 MW, according to accelerator physicists at Brookhaven.

Best

Particle Therapy

The**Cern Courier**November/December 2019**

NEWS DIGEST

KAGRA complete

The construction of Japan’s first gravitational-wave (GW) detector, KAGRA, was finished in late October. Following agreement with the LIGO and Virgo collaborations, KAGRA will now participate in their third joint observation run, which began in April. The detector, which was built by the University of Tokyo, the National Astronomical Observatory of Japan and RIKI, is the world’s fourth major GW detector, alongside LIGO in Washington, Louisiana and Virgo in Italy. One of a suite of detectors in the Kamioka Observatory in northern Japan, KAGRA is also the first GW detector to operate at cryogenic temperatures, improving sensitivity at frequencies around 10Hz – an important feature for proposed third-generation detectors such as the Einstein Telescope in Europe and the Cosmic Explorer in the US.

Best

ABT Molecular Imaging

400 MeV Rapid Cycling Medical Synchrotron for Proton-to-Carbon Heavy Ion Therapy:

- Intrinsically small beams facilitating beam delivery with precision
- Small beam sizes – small magnets, light gantries – smaller footprint
- Highly efficient single turn extraction
- Efficient extraction – less shielding
- Flexibility – heavy ion beam therapy (protons and/or carbon), beam delivery modalities

Best

Molecular Imaging

400 MeV Rapid Cycling Medical Synchrotron for Proton-to-Carbon Heavy Ion Therapy:

- Intrinsically small beams facilitating beam delivery with precision
- Small beam sizes – small magnets, light gantries – smaller footprint
- Highly efficient single turn extraction
- Efficient extraction – less shielding
- Flexibility – heavy ion beam therapy (protons and/or carbon), beam delivery modalities

The BG-75 Biomarker Generator is a revolutionary development in radio-pharmaceutical production that delivers a single or batch dose of 18F-FDG, and additional advanced 18F biomarkers on demand.

The system provides integration of all components to identify PET biomarkers into a single, self-contained system that occupies a fraction of the space required by conventional solutions, simplifying the implementation of PET.

Best

Molecular Imaging

400 MeV Rapid Cycling Medical Synchrotron for Proton-to-Carbon Heavy Ion Therapy:

- Intrinsically small beams facilitating beam delivery with precision
- Small beam sizes – small magnets, light gantries – smaller footprint
- Highly efficient single turn extraction
- Efficient extraction – less shielding
- Flexibility – heavy ion beam therapy (protons and/or carbon), beam delivery modalities

The BG-75 Biomarker Generator is a revolutionary development in radio-pharmaceutical production that delivers a single or batch dose of 18F-FDG, and additional advanced 18F biomarkers on demand.

The system provides integration of all components to identify PET biomarkers into a single, self-contained system that occupies a fraction of the space required by conventional solutions, simplifying the implementation of PET.
if there is no second chance: sensitivity & speed @ highest precision

PCO - the most versatile sCMOS camera portfolio on the market

ENERGY FRONTIERS

Reports from the Large Hadron Collider experiments

ATLAS

Zooming in on top quarks

As the heaviest known particle, the top quark plays a unique role in the Standard Model (SM), making it's presence felt in corrections to the masses of the W and Higgs bosons, and also, perhaps, its as-yet unseen physics beyond the SM. During Run 2 of the Large Hadron Collider (LHC), high-luminosity proton beams were collided at centre-of-mass energy of 13 TeV. This allowed ATLAS to record and study an unprecedented number of collisions producing top–antitop pairs, providing ATLAS physicists with a unique opportunity to gain insights into the top quark's properties.

ATLAS has measured the top–antitop production cross-section using events where one top quark decays to an electron, a neutrino and a bottom quark, and the other to a muon, a neutrino and a bottom quark. The striking signature gives a clean and almost background-free sample, leading to a result with an uncertainty of only 2.4%, which is the most precise top–quark pair production measurement to date. The measurement provides information on the top quark's mass, and can be used to improve our knowledge of the parton distribution functions describing the internal structure of the proton.

The mass of the top quark is a fundamental parameter of the SM, which impacts precision calculations of certain quantum corrections. It can be measured kinematically through the reconstruction of the top–antitop decay products. The top quark decays via the weak interaction as a free particle, but the resulting bottom quark interacts with other particles produced in the collision and eventually emerges as a collimated “b-jet” of hadrons. Modelling this process and calibrating the jet measurements in the detector limits the precision in measuring top–quark mass measurements. However, 90% of the b-jets contain a muon that carries information relating to the parent bottom quark. By combining this muon with an isolated lepton from a W-boson originating from the same top–quark decay, ATLAS has made a new measurement of the top quark mass with a much-reduced dependence on jet modelling and calibration. The result is ATLAS's most precise individual top–quark mass measurement to date: 174.48 ± 0.78 GeV. At the LHC, top and antitop quarks are not produced fully symmetrically with respect to the proton–beam direction, with top antiquarks produced slightly more often at large angles to the beam, and top quarks, which receive more momentum from the colliding proton, emerging closer to the axis. Higher order QCD diagrams translate this imbalance into the so-called charge asymmetry, which the SM predicts to be small (~0.6%), but which could be enhanced, or even suppressed, by new physics processes interfering with the known production modes. Using its full Run-2 data sample, ATLAS finds evidence of charge asymmetry in top–quark pair events with a significance of four standard deviations, confirming that the asymmetry is indeed non-zero. The measured charge asymmetry of ~0.6% is compatible with the latest SM predictions. ATLAS also measured the charge asymmetry versus the mass of the top–antitop system, further probing the SM.

Further reading

HYPERNUCLEI

Hypernuclei are bound states of nucleons and hyperons. Studying their properties is one of the best ways to investigate hyperon–nucleon interactions and offers insights into the high-density inner cores of neutron stars, which favour the creation of the exotic nuclear states. Constraining such astrophysical models requires detailed knowledge of hyperon–nucleon and three-body hyperon–nucleon–nucleon interactions. The strengths of these interactions can be determined in collider experiments by precisely measuring the lifetimes of hypernuclei.

Hypernuclei are produced in significant quantities in heavy-ion collisions at LHC energies. The lightest, the hypertriton, is a bound state of a proton, a neutron and a Λ. With a Λ-separation energy of only ~130 keV, the average distance between the energy of only ~130 keV, the average distance between the Λ and the deuteron core is 0.6 fm. This relatively large separation implies only a small perturbation to the Λ wavefunction inside the hypernucleus, and therefore a hypertriton lifetime close to that of a free Λ.

The ALICE collaboration has recently measured Λ-hypernuclei lifetimes in heavy-ion collisions at NN = 5.02 TeV, which were collected in 2011. The lifetime of the (anti-)hypertriton is determined by reconstructing the two-body decay channel $\Lambda \to p + \pi^0$. The branching ratio of this decay channel, taken from the theoretical calculations, is 25%. The measured lifetime is $\tau_{\Lambda} = 2.3\pm0.2 \text{ ps}$ (stat) $\pm0.1 \text{ ps}$ (syst). This result shows an improved statistical resolution and reduced systematic uncertainties compared to previous measurements and is currently the most precise measurement. It is also in agreement with both theoretical predictions and the free-Λ lifetime, even within the statistical uncertainty. Combining this ALICE result with previous measurements gives a weighted average of $206\pm13 \text{ ps}$ (fig. 1).

This result represents an important step forward in solving the longstanding hypertriton lifetime puzzle, since it is the first measurement with a large data sample that is close to theoretical expectations. Larger and more precise data sets are expected to be collected during LHC Runs 3 and 4, following the ongoing major upgrade of ALICE. This will allow a significant improvement in the quality of the present lifetime measurement, and the determination of the Λ binding energy with high precision. The combination of these two measurements has the potential to constrain the branching ratio for this decay, which cannot be determined directly without access to the neutron and non-meson decay channels. This will be a crucial step towards understanding the non-perturbative theoretical description of the hypertriton; it is finally resolved.

Further reading

LHCb

Rarest strange decay shifts from sight

For every trillion Λ_c only five are expected to decay to two muons. Like the better-known Λ decay, $\Lambda_c \rightarrow \mu^+ \mu^-$ is challenging due to the low transverse momentum of the two muons, typically of a few hundred MeV/c. Though primarily designed for the study of heavy-flavour particles, $\Lambda_c \rightarrow \mu^+ \mu^-$ is one of the best ways to investigate the so-called “combinatorial background” which arises from coincidental decays. Additionally, a detailed and data-driven map of the detector material around the interaction point helps to reduce the “tail” background caused by particles interacting with the detector material. A background of $\Lambda_c \rightarrow \mu^+ \mu^-$ decays dominates the selection, and in the absence of a compelling signal, an upper limit to the branching fraction of 2×10^{-10} has been set at 90% confidence. This is approximately four times more stringent than the previous world-best limit, set by LHCb with Run-1 data. This result has implications for physics models with leptoquarks and some fine-tuned regions of the Minimal Supersymmetric SM.

The upgraded LHCb detector, scheduled to begin operating in 2021 after the present long shutdown of the LHC, will offer significant opportunities to improve the precision of this search and eventually find a signal. In addition to the increased luminosity, the LHCb upgrade will have a full software trigger, which is expected to significantly improve the signal efficiency for $\Lambda_c \rightarrow \mu^+ \mu^-$ and other decays with very soft final-state particles.

Further reading

CMS goes scouting for dark photons

One of the best strategies for searching for new physics in the TeV regime is to look for the decays of new particles. The CMS collaboration has searched for the dilepton channel for particles with masses above 75 GeV/c2 and for the start of LHC data taking. Thanks to newly developed triggers, the searches are now being extended to the more difficult lower range of masses. A promising bubble could come from a Standard Model (SM) that could exist in this mass range is the dark photon (ZD). Its coupling with SM particles and production rate depend on the value of a kinetic mixing coefficient, and the resulting strength of the interaction of the ZD with ordinary matter may be several orders of magnitude weaker than the electroweak interaction. The CMS collaboration has recently presented results of a new resonance decaying to a pair of muons in the mass range ~ 10 GeV/c2. This search looks for a strikingly sharp peak on top of a smooth dimuon mass spectrum that arises mainly from the Drell-Yan process. At masses below approximately 450 GeV/c2, conventional triggers are the main limitation for this analysis as the thresholds on the muon transverse momenta, which are applied online to reduce the rate of events saved for offline analysis, are too high. The analysis uses two machine-learning tools: one to discriminate signal candidates from the so-called “background” which arises from coincidental decays, and another to discriminate signal candidates from the so-called “background” which arises from coincidental decays. A dedicated set of high-rate dimuon “scouting” triggers, with some additional kinematic cuts on the dimuon system and significantly lower rate of events. The first measurements using the larger data sets collected by the standard dimuon triggers (red) and the dimuon scouting triggers (green).
When SCADA is the right solution

Throughout Cosylab’s work in developing supervisory control and data acquisition (SCADA) solutions, we have often noticed that our customers have a lack of understanding of the role of SCADA in a system when we are asked to provide a solution. This poses a risk when it comes to whether or not our customers will find our solution useful for their work. As it is in our best interests to provide a useful solution to our customers, and since this is also what we strive for, we would like to share what we see as the role of SCADA. In cases when SCADA really is the right solution for the given problem, then a number of questions must be asked in order to design a successful SCADA solution. Our ultimate aim is to bring clarity to those thinking about whether they need SCADA or not.

What is a SCADA system?
SCADA systems are used all over the world for supervisory control and data acquisition. Understanding a useful SCADA and how to make it begins with an understanding of the role of SCADA in a system.

The need for SCADA evolved over time after agrarian and handicraft economies shifted rapidly to industrial and machine-manufacturing economies. The Industrial Revolution in the 18th century. Initially, machines were developed that could perform repeatable processes faster, with more consistency and with greater precision than people. Much of this was also about eliminating human error. While this first step in the Industrial Revolution replaced many people with machines for this first step in the Industrial Revolution, it also about eliminating human error. While this first step in the Industrial Revolution replaced many people with machines for this first step in the Industrial Revolution, the role of magnetic flux trapping and impurities for RF success has pushed state-of-the-art niobium to near its theoretical limit. However, recent advances with Nb3Sn (CERN Courier July/August 2019 p3) have demonstrated performance levels commensurate with established niobium systems, but at a much higher operating temperature (4.2 K below 5 K).

This is the purpose of SCADA. It centralises control, congregates and exposes data to other system components on higher levels, and attempts to minimise human interaction with process control.

Determining the right SCADA solution Only after we have decided whether SCADA is the correct solution to a problem or not can we start asking ourselves what we want SCADA to do. This can be achieved through the following set of questions:

1. What does the system need to be supervised and acted upon (by SCADA) to ensure that the process will do what we want it to do?
 - What are the building blocks of the process that need supervision and what exactly does the supervision mean for every single building block?
 - What are the supervision tasks that are common for all the building blocks of the process?

2. What are the possible events in the system that would negatively impact on what we want the system to do (e.g. machine failure, software bugs, human error) and which of these need be handled by SCADA?
 - How can these events be handled to avoid negative impacts on the system?
 - Is it possible to detect these events?
 - How will SCADA receive notifications about these events?
 - Are there any preventative actions that we can take to prevent these events from happening?

3. What supervisory information is required to enable improvements to the system?
 - Here is where different types of SCADA statistics come in, including data mining and key performance indicators.

4. Which parts of the work defined in the first three questions can be automated, which parts do we want to automate, and which parts require human intervention/ supervision?
 - In the case of a fully automated process, you would need a graphical user interface with a single start button.

In conclusion
The key to getting a useful SCADA starts with a conversation with the customer about what they need and a clear conceptual design, guided by the above questions. Only after this process has been completed does it make sense to choose a specific SCADA technology (for example, WinCC OA, EPICS or TANGO) that best fits the job.

FIELD NOTES

International Conference on RF Superconductivity

Superconductivity heats up in Dresden

Accelerator experts from around the world met from 30 June – 5 July in Dresden’s historic city centre for six days of intense discussions on superconducting radio-frequency (SRF) science and technology. The Helmholtz-Zentrum Dresden-Rossendorf (HZDR) hosted the 59th conference in the biannual series, which demonstrated that SRF has matured to become the enabling technology for many applications. New SRF-based large-scale facilities throughout the world include the European XFEL in Germany, LCLS-II and PRLF in the US, ESSs in Sweden, RAL in Korea, and SHINE in China.

The conference opened on Germany’s hottest day of the year with a “young scientists” session comprising 40 posters. The following week featured programs packed with 67 invited oral presentations, more than 300 posters and an industrial exhibition. Keynote lecturer Thomas Tschentscher (European XFEL) discussed applications of high-repetition-rate SRF-based X-ray sources, while Andreas Maiers (University of Hamburg) reviewed rapidly advancing laser-plasma accelerators, emphasising their complementarity with SRF-based systems.

Much excitement in the community was generated by new, fundamental insights into power dissipation in RF superconductors. A better understanding of the role of magnetic flux trapping and impurities for RF success has pushed state-of-the-art niobium to near its theoretical limit. However, recent advances with Nb3Sn (CERN Courier July/August 2019 p3) have demonstrated performance levels commensurate with established niobium systems, but at a much higher operating temperature (4.2 K below 5 K).

The SRF conference traditionally plays an important role in attracting new young researchers and engineers to the field, and provides them with a forum to present their results. In the three days leading up to the conference, HZDR hosted tutorials covering all aspects from superconductivity fundamentals to cryomodule design, which attracted students and young scientists. During the conference, 18 young investigators were invited to give presentations. Bianca Giaccione (Fermilab) and Ryan Porter (Cornell University) received prizes for the best talks, alongside Guilherme Seminio (CSR) for best poster.

The SRF conference rotates between Europe, Asia and the Americas. SRF 2021 will be hosted by Michigan State University/PSI, while SRF 2023 moves on to Japan’s Riken Nishina Center.

Jens Knobloch, Helmholtz-Zentrum Berlin and Universität Siegen.
Lepton–photon interactions in Toronto

The 30th International Symposium on Lepton–Photon Interactions at High Energies was held in Canada from 5–10 August at the Westin Harbour Castle hotel, right on the Lake Ontario waterfront in downtown Toronto. Almost 300 delegates provided a snapshot of the entire field of particle physics and, for the first time, parallel sessions were convened from abstracts submitted by collaborations and individuals.

The symposium opened with a welcome from Chief L afrone of the Mississauga First Nation. It was followed by highlights from the latest experiments and updates on plans for the CERN accelerator complex, the new FAIR project in China and the recently inaugurated Belle II programme in Japan. The symposium was complemented by early results from their first 6.5 fb⁻¹ of data, including a spectacular observation in either fixed-target or high-luminosity collider. Such decays, currently being searched for directly in dedicated experiments worldwide, involve lepton–photon processes and provide the opportunity to study Drell-Yan production of a heavy neutrino in a W boson, which is an associated charged lepton, and followed by its transformation into an antineutrino, which could then be identified by its decay into a lepton of the same sign as that initially tagged (and possibly of a different flavour). The meeting was thus concluded in continuity with its initial commemoration: could the physics of neutrinos be one of the highlights of future high-energy collisions?

The programme continued with presentations from various research fields such as FASER and Mathisba (for masses larger than 10 GeV), proposed high-luminosity and high-energy colliders such as the Future Circular Collider (FCC) and the search for SM particles at the Tevatron. The 30th International Symposium on Lepton–Photon Interactions at High Energies (Lepton–Photon 2019) is a biennial conference that brings together researchers from all over the world to discuss the latest developments in the field of particle physics and to foster collaborations. The symposium has a long history, dating back to the 1960s, and has become a key event for the community, attracting physicists from all over the world to share their latest results and discuss future directions. The next symposium is scheduled for 2023.

The 30th International Symposium on Lepton–Photon Interactions at High Energies (Lepton–Photon 2019) is a biennial conference that brings together researchers from all over the world to discuss the latest developments in the field of particle physics and to foster collaborations. The symposium has a long history, dating back to the 1960s, and has become a key event for the community, attracting physicists from all over the world to share their latest results and discuss future directions. The next symposium is scheduled for 2023.
Exotic hadrons take centre stage in Guilin

The 18th International Conference on Hadron Spectroscopy and Structure, HADRON2019, took place in Guilin, China, from 16 to 21 August, co-hosted by the Guangxi Normal University and the Institute of Theoretical Physics of the Chinese Academy of Sciences. The conference brought together more than 350 experimental and theoretical physicists from more than 20 countries to discuss topics ranging from meson and baryon spectroscopy to nuclear structure and hypernuclei. The central issue was exotic hadrons: the strongly interacting particles that deviate from textbook descriptions of mesons and baryons. Searches for exotic hadrons and studies of their properties have been a focus for many high-energy physics experiments, and many fascinating results have been reported since 2003—when the first particles of this sort were discovered: the hidden-charm X(3872) and the open-charm Λ(1405) (both observed by Belle and BaBar, respectively. The most cited physics papers of Belle and BaBar, respectively. The interpretation of recent experimental results on collectivity (the bulk motion of nuclear matter at high temperatures) in terms of the formation of a “perfect liquid” was also discussed.

Illustrating the difficulty of understanding the inner structure of hadrons, the X(3872) discovered by Belle 16 years ago is still the subject of intensive investigations. Its mass is extremely close to the sum of the masses of two charmed mesons, D0 and D*0, and its decay width (1 ± 2 MeV) is anomalously small for a hadron of such a mass. New results on its decays into lighter particles were reported by BESIII. Alongside proposals for precise measurements of its mass, width and polarization at Belle-II, BESIII and the LHC experiments, a deeper understanding of the X(3872) may be just around the corner.

A close collaboration between experimentalists and theorists is required, and this conference provided a valuable opportunity to exchange ideas. Interesting discussions will continue at the next HADRON conference, to be held in Mexico in 2021.

Feng–Kun Guo Institute of Theoretical Physics, Chinese Academy of Sciences, and Simon Eidelman Budker Institute of Nuclear Physics and Novosibirsk State University.

Cooling experts head to Siberia

Accelerators of unstable or non-naturally occurring particles, such as proton–antiproton colliders with which the W and top-quark were discovered, famously rely on “beam-cooling” techniques, which reduce the beam’s phase-space volume in order to improve interaction rates. Cooling techniques continue to improve, enhancing current and future experiments using low-energy antiprotons, heavy ions and top quark. Beam-cooling technologies will contribute to an improved understanding of non-perturbative aspects of QCD. Parallel to the quest for the highest possible energies, many problems of lower- and intermediate-energy physics are still unresolved, such as the critical behaviour of excited baryonic matter, the nature of exotic resonances and puzzles relating to spin. The construction of new facilities will help answer these questions.

COOL19

Future searches for glueballs and other exotic hadronic states will contribute to an improved understanding of non-perturbative aspects of QCD. Parallel to the quest for the highest possible energies, many problems of lower- and intermediate-energy physics are still unresolved, such as the critical behaviour of excited baryonic matter, the nature of exotic resonances and puzzles relating to spin. The construction of new facilities will help answer these questions.

Fighting phase-space-beam-cooling experts from Russia

Electron–cooling R&D platforms were represented in profusion, including the US (BHC at Brookhaven and the planned REC at Brookhaven and CTF, Germany (CERN at the Forschungszentrum Jülich, the CERN LHC and ELENA), Japan (Nagoya University) and Japan (CERN the AD and ELENA), and Russia (NICA at JINR Dubna). Most of these are joint efforts with BNL, which continues to be the primary source for high- voltage, electronic–gun and solenoid systems for such coolers. Also represented were stochastic cooling installations, tests of coherent electron cooling, and, at long last, results from the Muon Ionization Cooling Experiment (MICE) (notably, the first observation of muon ionization cooling (first conceived at BNL almost 50 years ago), and a measurement of multiple scattering in a lithium–hydride energy absorber. Results with liquid hydrogen, xenon and argon are expected to follow soon after, and for example, nuclear physics at densities not far from the regime accessible in laboratory experiments.

The next edition of the conference will be held in Kiev from 27 June to 3 July 2021.

ANALYZE LASER-MATERIAL INTERACTION WITH SIMULATION.

Laser-material interaction, and the subsequent heating, is often studied with simulation using one of several modeling techniques. To select the most suitable approach, you can use information such as the material’s optical properties, the relative sizes of the objects to be heated, and the laser wavelength and beam characteristics as a guide. For the simulation, you can use COMSOL Multiphysics®.

The COMSOL Multiphysics® software is used for simulating designs, devices, and processes in all fields of engineering, manufacturing, and scientific research. See how you can apply it to modeling laser-material interactions. comsol.blog/laser-heating
FEATURE EXTREMELY LARGE TELESCOPE

Currently, 28 companies are actively collaborating on different parts of the ELT design, mostly from Europe. The amount of data produced by the ELT is estimated to be around 1–2 TB per night. The ELT’s success lies in ESO’s vast experience in the construction of innovative telescopes. The idea for ESO, a 16–nation intergovernmental organisation for research in ground-based and astronomical observatories, was conceived in 1949, with the aim of creating a European observatory dedicated to observations of the southern sky. At the time, the largest such facilities had an aperture of about 2 m; more than 50 years later, ESO is responsible for one of a variety of observatories, including its first telescope at La Silla, not far from Cerro Armazones (home of the ELT). Like ESO, ESO was born in the aftermath of the war to allow European countries to develop scientific projects that nations were unable to do on their own. The similarities are by no means a coincidence. From the beginning, ESO served as a model regarding important administrative aspects of the organisation, such as the council delegate structure, the finance base or personnel regulations. A stronger collaboration ensured in 1969, when ESO approached CERN to assist with the powerful and sophisticated instrumentation of its 3.6 m telescope and other challenges ESO was facing, both administrative and technical. This collaboration saw ESO facilities established at CERN: the Telescope Project Division and, a few years later, ESO’s Sky Atlas Laboratory. A similar collaboration has since been organised for EMIR and, more recently for a new hadron–therapy facility in Southeast Europe.

European Southern Observatory’s particle–physics roots

The ELT’s sheer size will enable the observation of distant objects that are currently beyond reach, allowing astronomers to better understand the formation of the first stars, galaxies and even black holes. The sharpness of its images will also enable a deeper study of extragalactic planets, possibly even the characterisation of their atmospheres. “One new direction may become possible through very high precision spectroscopy — direct detection of the expansion rate of the universe, which would be an amazing feat,” explains Pat Roche, emeritus of Oxford and former president of the ESO council. “But almost certainly the most exciting results will be from unexpected discoveries.”

Technical challenges

Approved in 2006, civil engineering for the ELT began in 2012. Construction of the 34 m- high, 86 m- diameter dome and the 3000-tonne main structure began in 2019. In January 2018 the first segments of the main mirror were successfully cast, marking the first step of a challenging five-mirror system that goes beyond the traditional two-mirror “Gregorian” design. The introduction of a third powered mirror delivers a focal plane that remains un-affected at all field locations, while a fourth and a fifth mirror correct distortions in real-time due to the Earth’s atmosphere or other external factors. This novel arrangement, combined with the sheer size of the ELT, makes almost every aspect of the design particularly challenging.

The main mirror is itself a monumental enterprise; it consists of 798 hexagonal segments, each measuring approximately 1.4 m across and 50 mm thick. To keep the surface unchanged by external factors such as temperature or wind, each segment has edge sensors measuring its location within a few nanometres — the most accurate ever used in a telescope. The construction and polishing of the segments, as well as the development of the edge sensors, is a demanding task and only possible thanks to the collaboration with industry, at least seven private companies are working on the main mirror alone. The size of the mirror was originally 4.2 m, but it was later reduced to 39 m, mainly for cost reasons, but still allowing the ELT to fulfill its main scientific goals. “The ELT is our largest project and we have to ensure that it can be constructed and operated within the available budget,” says Roche. “A great deal of careful planning and design, most of it with input from industry, was undertaken to understand the costs and the cost drivers, and the choice of primary mirror diameter emerged from these analyses.”

The task is not much easier for the other mirrors. The secondary mirror, measuring 4.4 m across, is highly convex and will be the largest secondary mirror ever employed on a telescope and the largest convex mirror ever produced. The ELT’s tertiary mirror also has a curved surface, contrary to more traditional designs. The fourth mirror will be the largest adaptive mirror ever made, supported by more than 10,000 actuators that will deform and adjust the mirror shape in real-time to achieve a factor-500 improvement in resolution. Currently, 28 companies are actively collaborating on different parts of the ELT design, mostly from Europe. In addition to its astronomical goals, the ELT will contribute to the growing confluence of cosmology and fundamental physics. Specifically, it will help elucidate the nature of dark energy by identifying distant type Ia supernovae, which serve as excellent markers of the universe’s expansion history. The ELT will also measure the change in redshift with time of distant objects — a feat that is beyond the capabilities of current telescopes — to indicate the rate of expansion. Possible variations over time of fundamental physics constants, such as the fine-structure constant and the strong coupling constant, will also be targeted. Such investigations are very challenging because the strength of the constraint on the variability depends critically on the accuracy of the wavelength calibration. The ELT’s ultra-stable high-resolution spectrophotograph aims to remove the systematic uncertainty currently present in the wavelength calibration measurements, offering the possibility to make an unambiguous detection of such variations.

The ELT construction is on schedule for completion, and first light is expected in 2025. “In the end, projects succeed because of the people who design, build and support them,” Roche says, attributed the success of the ELT to rigorous attention to design and analysis across all aspects of the project. The road ahead is still challenging and full of obstacles, but, as the former director of the Paris observatory André Danjon wrote to his correspondent at the Leiden Observatory, Jan Oort, in 1952: “L’astronomie est bien l’Ecole de la patience.” No doubt the ELT will pay extraordinary scientific rewards.

CERN COURIRER NOVEMBER/DECEMBER 2019

The ELT’s success lies in ESO’s vast experience in the construction of innovative telescopes. The idea for ESO, a 16–nation intergovernmental organisation for research in ground-based and astronomical observatories, was conceived in 1949, with the aim of creating a European observatory dedicated to observations of the southern sky. At the time, the largest such facilities had an aperture of about 2 m; more than 50 years later, ESO is responsible for one of a variety of observatories, including its first telescope at La Silla, not far from Cerro Armazones (home of the ELT). Like ESO, ESO was born in the aftermath of the war to allow European countries to develop scientific projects that nations were unable to do on their own. The similarities are by no means a coincidence. From the beginning, ESO served as a model regarding important administrative aspects of the organisation, such as the council delegate structure, the finance base or personnel...
FPGAs THAT SPEAK YOUR LANGUAGE

Long the preserve of professional engineers coding in low-level languages, FPGAs can now be programmed in C++ and Java, bringing machine learning and complex algorithms within the scope of trigger-level analysis.

Temming with radiation and data, the heart of a hadron collider is an inhospitable environment in which to make a tricky decision. Nevertheless, the LHC experiment detectors have only microseconds after each proton–proton collision to make their most critical analysis call: whether to read out the detector or reject the event forever. As a result of limitations in readout bandwidth, only 0.002% of the terabits per second of data generated by the detectors can be saved for use in physics analyses. Boosts in energy and luminosity – and the accompanying surge in the complexity of the data from the high-luminosity LHC upgrade – mean that the technical challenge is growing rapidly. New techniques are therefore needed to ensure that decisions are made with speed, precision and flexibility so that the subsequent physics measurements are as sharp as possible.

The front-end and read-out systems of most collider detectors include many application-specific integrated circuits (ASICs). These custom-designed chips digitise signals at the interface between the detector and the outside world. The algorithms are baked into silicon at the foundries of some of the biggest companies in the world, with limited prospects for changing their functionality in the light of changing conditions or detector performance. Minor design changes require substantial time and money to fix, and the replacement chip must be fabricated from scratch. In the LHC era, the tricky trigger electronics are therefore not implemented with ASICs, as before, but with field-programmable gate arrays (FPGAs). Previously used to prototype the ASICs, FPGAs may be re-programmed “in the field”, without a trip to the foundry. Now also prevalent in high-performance computing, with leading tech...
companies using them to accelerate critical processing in their data centres. FPGAs offer the benefits of task-specific customization of the computing architecture without having to set the chip’s functionality in stone – or in this case silicon.

Architecture of a chip

FPGAs can compete with other high-performance computing chips due to their massive capability for parallel processing and relatively low power consumption per operation. The devices contain many millions of programmable logic gates that can be configured and connected together to solve specific problems. Because of the vast numbers of tiny processing units, FPGAs can be programmed to work on many different parts of a task simultaneously, thereby achieving massive throughput and low latency – ideal for increasingly popular data-flow engines, who were previously used for offline track reconstruction on CPUs, but can now also readout data at terabits per second. Data are read out from the detector into the trigger system-FPGAs in the counting room in a cavern adjacent to CMS. The official FPGA code was implemented in VHDL, over several months each of development, debug, and testing. To investigate whether high-level FPGA programming can be practical, the same algorithms were implemented in MaxJ by an inexperienced doctoral student (figure 4), with the fast development of the FPGA programming to physicists themselves. Because of the vast numbers of logic gates that can be configured and connected together, making them ideal workhorses to process the deluge of data that streams out of particle detectors (see CERN Courier, September 2016 p11).

The difficulty in programming FPGAs is traditionally the preserve of engineers coding low-level languages such as VHDL and Verilog, where even simple tasks can be tricky. For example, a few of the numbers together require several lines of code in VHDL, with the designer even required to define when the operations happen relative to the processor clock (figure 4). Outsourcing the coding is impractical, given the immense need to implement elaborate algorithms featuring machine learning in the trigger to quickly analyse data from high-granularity detectors in high-luminosity environments. During the past five years, however, tools have matured, allowing FPGAs to be programmed in various high-level languages such as C++ and Java, and bringing FPGA coding within the reach of physicists themselves. But can high-level tools produce FPGA code with low-enough latency for trigger applications? And can their resource usage compete with professionally developed low-level code? During the past couple of years CMS physicists have trialled the use of a Java-based language, MaxJ, and tools from Maxeler Technologies, a leading company in accelerated computing and data-flow engines, who were partners in the studies. More recently the collaboration has also gained experience with the C++-based Vivado high-level synthesis (HLS) tool of the FPGA manufacturer Xilinx. The work has demonstrated the potential for ground-breaking new tools to be used in future triggers, without significantly increasing resource usage and latency.

Track and field-programmable

Tasked with finding hadronic jets and calculating missing transverse energy in a few microseconds, the trigger of the CMS calorimeter handles an information through-put of 6.5 terabits per second. Data are read out from the detector into the trigger-system-FPGAs in the counting room in a cavern adjacent to CMS. The official FPGA code was implemented in VHDL, over several months each of development, debug and testing. To investigate whether high-level FPGA programming can be practical, the same algorithms were implemented in MaxJ by an inexperienced doctoral student (figure 4), with the fast development of the FPGA programming to physicists themselves. Because of the vast numbers of logic gates that can be configured and connected together, making them ideal workhorses to process the deluge of data that streams out of particle detectors (see CERN Courier, September 2016 p11).

The difficulty in programming FPGAs is traditionally the preserve of engineers coding low-level languages such as VHDL and Verilog, where even simple tasks can be tricky. For example, a few of the numbers together require several lines of code in VHDL, with the designer even required to define when the operations happen relative to the processor clock (figure 4). Outsourcing the coding is impractical, given the immense need to implement elaborate algorithms featuring machine learning in the trigger to quickly analyse data from high-granularity detectors in high-luminosity environments. During the past five years, however, tools have matured, allowing FPGAs to be programmed in various high-level languages such as C++ and Java, and bringing FPGA coding within the reach of physicists themselves. But can high-level tools produce FPGA code with low-enough latency for trigger applications? And can their resource usage compete with professionally developed low-level code? During the past couple of years CMS physicists have trialled the use of a Java-based language, MaxJ, and tools from Maxeler Technologies, a leading company in accelerated computing and data-flow engines, who were partners in the studies. More recently the collaboration has also gained experience with the C++-based Vivado high-level synthesis (HLS) tool of the FPGA manufacturer Xilinx. The work has demonstrated the potential for ground-breaking new tools to be used in future triggers, without significantly increasing resource usage and latency.

Track and field-programmable

Tasked with finding hadronic jets and calculating missing transverse energy in a few microseconds, the trigger of the CMS calorimeter handles an information through-put of 6.5 terabits per second. Data are read out from the detector into the trigger-system-FPGAs in the counting room in a cavern adjacent to CMS. The official FPGA code was implemented in VHDL, over several months each of development, debug and testing. To investigate whether high-level FPGA programming can be practical, the same algorithms were implemented in MaxJ by an inexperienced doctoral student (figure 4), with the fast development of the FPGA programming to physicists themselves. Because of the vast numbers of logic gates that can be configured and connected together, making them ideal workhorses to process the deluge of data that streams out of particle detectors (see CERN Courier, September 2016 p11).

The difficulty in programming FPGAs is traditionally the preserve of engineers coding low-level languages such as VHDL and Verilog, where even simple tasks can be tricky. For example, a few of the numbers together require several lines of code in VHDL, with the designer even required to define when the operations happen relative to the processor clock (figure 4). Outsourcing the coding is impractical, given the immense need to implement elaborate algorithms featuring machine learning in the trigger to quickly analyse data from high-granularity detectors in high-luminosity environments. During the past five years, however, tools have matured, allowing FPGAs to be programmed in various high-level languages such as C++ and Java, and bringing FPGA coding within the reach of physicists themselves. But can high-level tools produce FPGA code with low-enough latency for trigger applications? And can their resource usage compete with professionally developed low-level code? During the past couple of years CMS physicists have trialled the use of a Java-based language, MaxJ, and tools from Maxeler Technologies, a leading company in accelerated computing and data-flow engines, who were partners in the studies. More recently the collaboration has also gained experience with the C++-based Vivado high-level synthesis (HLS) tool of the FPGA manufacturer Xilinx. The work has demonstrated the potential for ground-breaking new tools to be used in future triggers, without significantly increasing resource usage and latency.

Track and field-programmable

Tasked with finding hadronic jets and calculating missing transverse energy in a few microseconds, the trigger of the CMS calorimeter handles an information through-put of 6.5 terabits per second. Data are read out from the detector into the trigger-system-FPGAs in the counting room in a cavern adjacent to CMS. The official FPGA code was implemented in VHDL, over several months each of development, debug and testing. To investigate whether high-level FPGA programming can be practical, the same algorithms were implemented in MaxJ by an inexperienced doctoral student (figure 4), with the fast development of the FPGA programming to physicists themselves. Because of the vast numbers of logic gates that can be configured and connected together, making them ideal workhorses to process the deluge of data that streams out of particle detectors (see CERN Courier, September 2016 p11).

The difficulty in programming FPGAs is traditionally the preserve of engineers coding low-level languages such as VHDL and Verilog, where even simple tasks can be tricky. For example, a few of the numbers together require several lines of code in VHDL, with the designer even required to define when the operations happen relative to the processor clock (figure 4). Outsourcing the coding is impractical, given the immense need to implement elaborate algorithms featuring machine learning in the trigger to quickly analyse data from high-granularity detectors in high-luminosity environments. During the past five years, however, tools have matured, allowing FPGAs to be programmed in various high-level languages such as C++ and Java, and bringing FPGA coding within the reach of physicists themselves. But can high-level tools produce FPGA code with low-enough latency for trigger applications? And can their resource usage compete with professionally developed low-level code? During the past couple of years CMS physicists have trialled the use of a Java-based language, MaxJ, and tools from Maxeler Technologies, a leading company in accelerated computing and data-flow engines, who were partners in the studies. More recently the collaboration has also gained experience with the C++-based Vivado high-level synthesis (HLS) tool of the FPGA manufacturer Xilinx. The work has demonstrated the potential for ground-breaking new tools to be used in future triggers, without significantly increasing resource usage and latency.

Track and field-programmable

Tasked with finding hadronic jets and calculating missing transverse energy in a few microseconds, the trigger of the CMS calorimeter handles an information through...
PARTICLE PHYSICS INSPIRES ALL

Some 75,000 members of the public took part in the CERN Open Days on 14 and 15 September. Bathed in autumn sunshine, the lab offered visitors of all ages the opportunity to visit its underground and surface facilities, discover new technologies and engage with 150 activities at nine sites. Around 3000 staff and user volunteers, resplendent in bright-orange T-shirts, brought CERN's science and engineering to life. Here are a sample of shots and a smattering of visitor reactions captured by the Courier during CERN's biggest outreach event since the last Open Days in 2013.

“IT'S A HUGE PLACE FULL OF IDEAS TO TRY IN CASE SOMETHING REVOLUTIONARY TURNS UP.”

“WE'RE NOT HERE FOR THE SCIENCE, WE'RE HERE FOR THE MACHINES!”

“IT'S A HUGE PLACE FULL OF IDEAS TO TRY IN CASE SOMETHING REVOLUTIONARY TURNS UP.”

“There is high-tech science going on. You're trying to make applications to real life, such as non-destructive testing.”

“IT'S A HUGE PLACE FULL OF IDEAS TO TRY IN CASE SOMETHING REVOLUTIONARY TURNS UP.”

“We're not here for the science, we're here for the machines!”

“We're not here for the science, we're here for the machines!”

“IT'S A HUGE PLACE FULL OF IDEAS TO TRY IN CASE SOMETHING REVOLUTIONARY TURNS UP.”

“There is high-tech science going on. You're trying to make applications to real life, such as non-destructive testing.”

“We're not here for the science, we're here for the machines!”

“We're not here for the science, we're here for the machines!”

“There is high-tech science going on. You're trying to make applications to real life, such as non-destructive testing.”
ARTIFICIAL INTELLIGENCE FOR OPERATIONS
- Beamline parameters optimization
- Virtual machines and simulators
- Reinforcement learning for accelerator control systems
- Deep neural network solutions for beam prediction

MOI AI SOLUTION FOR PARTICLE ACCELERATORS
- Fully integrated AI framework for accelerator control
- Machine learning technology for mission-critical designs
- Real-Time interlocks and protection systems

BPM Controller for RAON Accelerator
- 16 RF inputs and 6 BPM processors per controller
- Position and phase resolution better than 5 µm and 0.1º
- Embedded EPICS IOC and Channel Access

EPICS ported Step-Motor Controller
- Fast and stable control of up to eight motors
- Compact design with Ethernet communication
- Embedded EPICS IOC, Channel Access

Bespoke Electronics for Particle Accelerators:
- BPM and LLRF Controllers
- Step-motor, HV and Vacuum Controllers

Software and Hardware Solutions for Integrated Control:
- Distributed control systems & SCADA: EPICS, WinCC, LabView
- PLC engineering: Siemens, Beckoff, TwinCAT
- FPGA solutions

Interlocks and Safety Systems:
- Mission-critical systems for fusion reactors and accelerators
- High-dependable solutions for occupational safety

LLRF Controller for PAL X-FEL
- Excellent stability performance of 0.02% (amplitude) and 0.03º (phase)
- Independent channel amplifier control
- Embedded EPICS IOC and Channel Access

Accelerator Vacuum Controller
- Integrated and compact (201) control of beamline vacuum instrumentation
- Up to 20 valves, 8 motors and gauge control (R5213)
- Control of up to 64 meters (R5485)
- Embedded EPICS IOC, Channel Access

AI SOLUTIONS FOR YOUR BIG SCIENCE PROJECTS

DEVELOPING TODAY THE TOOLS FOR THE FUTURE OF ACCELERATORS

FEATURE CERN OPEN DAYS

“CERN is here to test out how particles behave and exploring the limit of the universe, like matter (which we know) and antimatter (which we don’t).”

“CERN is here to test out how particles behave and exploring the limit of the universe, like matter (which we know) and antimatter (which we don’t).”

“If you understand materials and energy at the basic scale, you have a better chance of creating new energy sources and materials for the future.”

“If you understand materials and energy at the basic scale, you have a better chance of creating new energy sources and materials for the future.”

“I read an article recently that said this was all a waste of taxpayers’ money, but now I am less sure because I have seen today that there are a lot of applications.”

“I read an article recently that said this was all a waste of taxpayers’ money, but now I am less sure because I have seen today that there are a lot of applications.”

mobiis.com

mobiis.com/en
hello@mobiis.com

CERN COURIER COM

VOLUME 59 NUMBER 6 NOVEMBER/DECEMBER 2019
The Rise of French Particle Physics

Founded 80 years ago, the French National Centre for Scientific Research (CNRS) is one of Europe’s largest research institutions. Ursula Bassler and Denis Guthleben look back at its history and achievements in nuclear and high-energy physics.

Marie Curie once described the laboratory she shared with her husband Pierre as “just a clapboard hut with an asphalt floor and glass roof giving incomplete protection against the rain, without any amenities”. Even her colleagues abroad were shocked by their paltry resources. German chemist Wilhelm Ostwald noted: “The laboratory was a cross between a stable and a potato shed, and if it hadn’t been for the chemical apparatus, I would have thought it a practical joke.” In the 1920s, newspapers showed the desperate situation the French laboratories were in. “There are some in attics, others in cellars, others in the open air...” the Petit Journal newspaper reported in 1921. Increasing research funding to elevate France to the level of countries like Germany became a rallying point for the nation.

In the inter-war years, Jean Perrin, winner of the 1926 Nobel Prize in Physics for his work showing the existence of atoms, championed the development of science and had the support of many other scientists. Thanks to financial support from the Rothschild Foundation, he founded the CEA and CNRS, showing regions that have been pulverised by the high-voltage electric arcs.

The Authors

Ursula Bassler: CNRS National Institute of Nuclear and Particle Physics and president of the CERN Council; and Denis Guthleben: scientific attaché to the committee for the history of CNRS.
Institute of Physico-Chemical Biology, the first place to employ researchers full-time. In 1935 he managed to get support of women’s rights and scientific research. During 1936, and with it came the appointment of France’s first women in the government. This was the inclusion of three women in the government.\footnote{In 1939, for the first time in French history, women were appointed to the government.}\footnote{In 1939, for the first time in French history, women were appointed to the government.}\footnote{In 1939, for the first time in French history, women were appointed to the government.} found the CNRS in the formation of the National Institute of Nuclear and Applied Research. In 1939, the CNRS was founded, and it played a crucial role in the advancement of nuclear physics, including research undertaken in university laboratories. From 1946, all the names – Auger, Joliot-Curie, Perrin, and Kowarski – joined CEA. CEA was therefore founded to bring together the people involved in fundamental and applied research. André Berthelot was the director of the nuclear physics division at Saclay and installed several accelerators there.

Founding CERN
In the 1950s French physicists played a key role in the establishment of CERN. Louis de Broglie, the first well-known scientist to call for the creation of a multinational laboratory, Auger, who was director of the department of exact and natural sciences at UNESCO, Dautry, director-general of CEA, Perrin, the high commissioner, and Kowarski, one of CEA’s first staff members who later became director of scientific and technical services. He is credited with the construction of the first bubble-chamber at CERN and the introduction of computers. Joliot-Curie, relieved of his duties at CEA owing to his political beliefs, was transferred to the French Embassy in London. He was later director of the laboratory; Auger, who was director of the department of Mathematical Sciences and their Interactions, was the first director-general of CERN.

When CNRS was founded, French physicists were among the world’s leaders. Irène and Frédéric Joliot-Curie, Jean Perrin, Louis de Broglie, and Pierre Auger are among the names that have entered the history books from this time. Perrin and Kowarski – joined CEA. CNRS was therefore found in the formation of the National Institute of Nuclear and Applied Research. In 1939, the CNRS was founded, and it played a crucial role in the advancement of nuclear physics, including research undertaken in university laboratories. From 1946, all the names – Auger, Joliot-Curie, Perrin, and Kowarski – joined CEA. CEA was therefore founded to bring together the people involved in fundamental and applied research. André Berthelot was the director of the nuclear physics division at Saclay and installed several accelerators there.

Founding CERN
In the 1950s French physicists played a key role in the establishment of CERN. Louis de Broglie, the first well-known scientist to call for the creation of a multinational laboratory, Auger, who was director of the department of exact and natural sciences at UNESCO, Dautry, director-general of CEA, Perrin, the high commissioner, and Kowarski, one of CERN’s first staff members who later became director of scientific and technical services. He is credited with the construction of the first bubble-chamber at CERN and the introduction of computers. Joliot-Curie, relieved of his duties at CEA owing to his political beliefs, was transferred to the French Embassy in London. He was later director of the laboratory; Auger, who was director of the department of Mathematical Sciences and their Interactions, was the first director-general of CERN.

When CNRS was founded, French physicists were among the world’s leaders. Irène and Frédéric Joliot-Curie, Jean Perrin, Louis de Broglie, and Pierre Auger are among the names that have entered the history books from this time. Perrin and Kowarski – joined CEA. CNRS was therefore founded to bring together the people involved in fundamental and applied research. André Berthelot was the director of the nuclear physics division at Saclay and installed several accelerators there.

From strength to strength
During the 1950s and 1960s CNRS went from strength to strength and set up more laboratories for high-energy and nuclear physics. A Cockcroft-Walton accelerator, built in Strasbourg by the Germans during the war, was the seed that grew into the Nuclear Research Centre in Grenoble. The French government, including research undertaken in university laboratories. From 1946, all the names – Auger, Joliot-Curie, Perrin, and Kowarski – joined CEA. CEA was therefore founded to bring together the people involved in fundamental and applied research. André Berthelot was the director of the nuclear physics division at Saclay and installed several accelerators there.

Finding CERN
In the 1950s French physicists played a key role in the establishment of CERN. Louis de Broglie, the first well-known scientist to call for the creation of a multinational laboratory, Auger, who was director of the department of exact and natural sciences at UNESCO, Dautry, director-general of CEA, Perrin, the high commissioner, and Kowarski, one of CEA’s first staff members who later became director of scientific and technical services. He is credited with the construction of the first bubble-chamber at CERN and the introduction of computers. Joliot-Curie, relieved of his duties at CEA owing to his political beliefs, was transferred to the French Embassy in London. He was later director of the laboratory; Auger, who was director of the department of Mathematical Sciences and their Interactions, was the first director-general of CERN.

When CNRS was founded, French physicists were among the world’s leaders. Irène and Frédéric Joliot-Curie, Jean Perrin, Louis de Broglie, and Pierre Auger are among the names that have entered the history books from this time. Perrin and Kowarski – joined CEA. CNRS was therefore founded to bring together the people involved in fundamental and applied research. André Berthelot was the director of the nuclear physics division at Saclay and installed several accelerators there.

From strength to strength
During the 1950s and 1960s CNRS went from strength to strength and set up more laboratories for high-energy and nuclear physics. A Cockcroft-Walton accelerator, built in Strasbourg by the Germans during the war, was the seed that grew into the Nuclear Research Centre in Grenoble. The French government, including research undertaken in university laboratories. From 1946, all the names – Auger, Joliot-Curie, Perrin, and Kowarski – joined CEA. CEA was therefore founded to bring together the people involved in fundamental and applied research. André Berthelot was the director of the nuclear physics division at Saclay and installed several accelerators there.

Finding CERN
In the 1950s French physicists played a key role in the establishment of CERN. Louis de Broglie, the first well-known scientist to call for the creation of a multinational laboratory, Auger, who was director of the department of exact and natural sciences at UNESCO, Dautry, director-general of CEA, Perrin, the high commissioner, and Kowarski, one of CEA’s first staff members who later became director of scientific and technical services. He is credited with the construction of the first bubble-chamber at CERN and the introduction of computers. Joliot-Curie, relieved of his duties at CEA owing to his political beliefs, was transferred to the French Embassy in London. He was later director of the laboratory; Auger, who was director of the department of Mathematical Sciences and their Interactions, was the first director-general of CERN.

When CNRS was founded, French physicists were among the world’s leaders. Irène and Frédéric Joliot-Curie, Jean Perrin, Louis de Broglie, and Pierre Auger are among the names that have entered the history books from this time. Perrin and Kowarski – joined CEA. CNRS was therefore founded to bring together the people involved in fundamental and applied research. André Berthelot was the director of the nuclear physics division at Saclay and installed several accelerators there.

From strength to strength
During the 1950s and 1960s CNRS went from strength to strength and set up more laboratories for high-energy and nuclear physics. A Cockcroft-Walton accelerator, built in Strasbourg by the Germans during the war, was the seed that grew into the Nuclear Research Centre in Grenoble. The French government, including research undertaken in university laboratories. From 1946, all the names – Auger, Joliot-Curie, Perrin, and Kowarski – joined CEA. CEA was therefore founded to bring together the people involved in fundamental and applied research. André Berthelot was the director of the nuclear physics division at Saclay and installed several accelerators there.

Finding CERN
In the 1950s French physicists played a key role in the establishment of CERN. Louis de Broglie, the first well-known scientist to call for the creation of a multinational laboratory, Auger, who was director of the department of exact and natural sciences at UNESCO, Dautry, director-general of CEA, Perrin, the high commissioner, and Kowarski, one of CEA’s first staff members who later became director of scientific and technical services. He is credited with the construction of the first bubble-chamber at CERN and the introduction of computers. Joliot-Curie, relieved of his duties at CEA owing to his political beliefs, was transferred to the French Embassy in London. He was later director of the laboratory; Auger, who was director of the department of Mathematical Sciences and their Interactions, was the first director-general of CERN.

When CNRS was founded, French physicists were among the world’s leaders. Irène and Frédéric Joliot-Curie, Jean Perrin, Louis de Broglie, and Pierre Auger are among the names that have entered the history books from this time. Perrin and Kowarski – joined CEA. CNRS was therefore founded to bring together the people involved in fundamental and applied research. André Berthelot was the director of the nuclear physics division at Saclay and installed several accelerators there.

Finding CERN
In the 1950s French physicists played a key role in the establishment of CERN. Louis de Broglie, the first well-known scientist to call for the creation of a multinational laboratory, Auger, who was director of the department of exact and natural sciences at UNESCO, Dautry, director-general of CEA, Perrin, the high commissioner, and Kowarski, one of CEA’s first staff members who later became director of scientific and technical services. He is credited with the construction of the first bubble-chamber at CERN and the introduction of computers. Joliot-Curie, relieved of his duties at CEA owing to his political beliefs, was transferred to the French Embassy in London. He was later director of the laboratory; Auger, who was director of the department of Mathematical Sciences and their Interactions, was the first director-general of CERN.

When CNRS was founded, French physicists were among the world’s leaders. Irène and Frédéric Joliot-Curie, Jean Perrin, Louis de Broglie, and Pierre Auger are among the names that have entered the history books from this time. Perrin and Kowarski – joined CEA. CNRS was therefore founded to bring together the people involved in fundamental and applied research. André Berthelot was the director of the nuclear physics division at Saclay and installed several accelerators there.

Finding CERN
In the 1950s French physicists played a key role in the establishment of CERN. Louis de Broglie, the first well-known scientist to call for the creation of a multinational laboratory, Auger, who was director of the department of exact and natural sciences at UNESCO, Dautry, director-general of CEA, Perrin, the high commissioner, and Kowarski, one of CEA’s first staff members who later became director of scientific and technical services. He is credited with the construction of the first bubble-chamber at CERN and the introduction of computers. Joliot-Curie, relieved of his duties at CEA owing to his political beliefs, was transferred to the French Embassy in London. He was later director of the laboratory; Auger, who was director of the department of Mathematical Sciences and their Interactions, was the first director-general of CERN.
secondment policy at CNRS. Among them was Bernard Gregory, who worked at Leprince-Ringuet’s laboratory and focused on the construction of a large, 81cm liquid-hydrogen bubble chamber in Saclay in preparation for the impending commissioning of the Proton Synchrotron (PS) at CERN. It produced more than 10 million pictures of particle interactions, which were shared all over Europe. In 1965 Gregory became the Director-General of CERN. Five years later, he replaced Louis Leprince-Ringuet as the head of the École polytechnique laboratory, and then became director general of CNRS. It was he who was elected President of the CERN Council in 1977.

Managing the expansion

In the 1960s research facilities were becoming so large that the idea came within CERN to create national institutes to coordinate the laboratories’ resources and programmes. LAL director André Blanc-Lapierre campaigned for a National Institute of Nuclear and Particle Physics, the example of the Italian INFN founded in 1951. The aim was to organise the funding allocated to the various laboratories by CNRS, the universities and CEA. Discussions between the partners then began. In parallel, French physicists were engaged in another debate. After the construction of the 0.5 GeV proton accelerator SATURNE at CEA in Saclay in 1958 and the 1.3 GeV electron linear accelerator at LAL in Orsay in 1962, as well as the later ACO collider at LAAS in Toulouse, options were divided about building a national machine that would complement CERN’s experimental capacities and strengthen the French scientific community. Two options were in the running: a proton machine and an electron machine. This decision was especially important since other machines were springing up elsewhere in Europe. In Italy, the electron–positron collider ADA was followed by ADONE in 1969. In Hamburg, Germany, the electron synchrotron DESY was commissioned in 1967.

France’s priority, however, was construction of the European level with CERN, so neither of the two proposed projects ever got off the ground. In 1969, the successful experiments of Frédéric Joliot-Curie as head of the IFP, founded IN2P3 in 1952, federating the laboratories and the universities of CNRS. It was only later, in 1973, that CEA and IN2P3 agreed to collaborate to build a national machine in Cern, the Large Heavy Ion National Accelerator (“Grande Accélérateur National d’Ion Lourds”, GANIL), which specialised in nuclear physics. Despite the fact that the CEA laboratories involved were not part of IN2P3, the physicists of the two organisations collaborated extensively.

In this context, André Lagarrigue, who had been the director of LAL since 1969, proposed the construction of a new bubble chamber, Gargamelle, on a neutrino beam at CERN. The scientist had previously investigated the feasibility of bubble chambers containing heavy liquids that would favour interactions with neutrinos instead of hydrogen at the École polytechnique. After its construction at Saclay, the chamber filled with liquid freon was installed at CERN and detected neutral currents in 1973. It was a major discovery, which certainly would have won Lagarrigue a Nobel prize had he not died of a heart attack in 1975.

The question of what follows after the initial stage of a linear electron–positron collider is premature to answer

Around 32,000 people currently work at CNRS in collaboration with universities, private laboratories and other organisations

Why CLIC?

There is an increasing consensus that the next large accelerator after the LHC should be an electron–positron collider. Several proposals are on the table, circular and linear. Around 75 collaborating institutes worldwide are involved in the CERN-hosted studies for the Compact Linear Collider (CLIC), which offers a long-term and flexible physics programme that is able to react to discoveries and technological developments. The 11km–long initial stage of CLIC is proposed for operation at a centre-of-mass energy of 500GeV, providing a rich programme of precision Higgs–boson and top–quark measurements that reach well beyond the projections for the high-luminosity LHC. From a technical point of view, operation of the initial stage by around 2035 is possible, with a cost of approximately 5 billion Swiss francs. This is similar to the cost of the UK and of the proposed International Linear Collider (ILC) and, as well as less than that of future circular lepton colliders.

Extensions beyond the initial CLIC energy range are fundamental. These include the regime of the W and Z bosons by UA1 and UA2, contributions to ALEPH, DELPHI and LEP, the discovery of the Higgs boson by ATLAS and CMS at the LHC, flavour studies at LHCb, heavy-ion physics at ALICE, neutrino physics, CP-violation, antimatter experiments, as well as nuclear physics. These joint ventures also involve other CNRS institutes like the INP (Institute of Physics), with its specialists in quantum physics and lasers, as well as in strong magnetic fields.

Future CERN projects are currently being discussed in the context of the ongoing European strategy process. They offer the prospect of new collaborations between CERN and CNRS in high-energy physics, but also in engineering, computing, bio-medicine and even the humanities and social sciences. No doubt the synergy between the two organisations, with their exceptionally rich scientific excellence, will continue to give birth to exciting new research.

High ambitions: André Lagarrigue in front of the Gargamelle bubble chamber at CERN.

Steinar Stapnes

Steinar Stapnes considers the past, present and future of CERN’s proposed Compact Linear Collider.

Steinar Stapnes is linear-collider study leader at CERN.

High-energy electron–positron collisions, together with proton–proton or proton–antiproton collisions, have been a successful framework for progress in particle physics for half a century. Increasing the energy and luminosity of such machines is challenging. CLIC’s drive–beam concept was instrumental in providing a credible and scalable powering option at multi–TeV energies. A cost optimisation combined with the practical need of radio–frequency (RF) power units for R&D and testing led to the present normal–conducting 340 m 340 m “X–band” accelerating structures with an accelerating gradient of up to 100MV/m. In parallel, CLIC’s energy use at SLI/IPHC has been scrutinised to keep it well below CERN’s annual consumption today, and less than 5% of the estimation for a future circular–electron–positron collider.

The next steps needed for CLIC are clear. The project–implementation plan foresees a five-year preparation phase prior to construction, which is envisaged to start by 2036. The preparation phase would focus on further design optimisation and technical and industrial development of critical parts of the accelerator system verification in free–electron–linac rings and low–emittance rings will be increasingly important for performance studies, while civil engineering and infrastructure preparation will become progressively more detailed, in parallel with an environmental impact study. Detector preparation will need to be scaled up too.

The increasing use of X–band technology – either as the main RF acceleration for CLIC or for compact test facilities, light sources, medical accelerators or low–energy particle physics studies – provides new collaborative opportunities towards a technical design report for the CLIC accelerator.

It is for the broader particle–physics community and CERN to decide whether CLIC proceeds. We are therefore eagerly looking forward to the conclusion of the European strategy process next year. For now, it is important to communicate how CLIC’s drive–beam concept is being instrumental in providing a credible and scalable powering option at multi–TeV energies. A cost optimisation combined with the practical need of radio–frequency (RF) power units for R&D and testing led to the present normal–conducting 340 m 340 m “X–band” accelerating structures with an accelerating gradient of up to 100MV/m. In parallel, CLIC’s energy use at SLI/IPHC has been scrutinised to keep it well below CERN’s annual consumption today, and less than 5% of the estimation for a future circular–electron–positron collider.

The next steps needed for CLIC are clear. The project–implementation plan foresees a five-year preparation phase prior to construction, which is envisaged to start by 2036. The preparation phase would focus on further design optimisation and technical and industrial development of critical parts of the accelerator system verification in free–electron–linac rings and low–emittance rings will be increasingly important for performance studies, while civil engineering and infrastructure preparation will become progressively more detailed, in parallel with an environmental impact study. Detector preparation will need to be scaled up too.

The increasing use of X–band technology – either as the main RF acceleration for CLIC or for compact test facilities, light sources, medical accelerators or low–energy particle physics studies – provides new collaborative opportunities towards a technical design report for the CLIC accelerator.
Device in dual-tube design insensitive to pressure, impact and vibrations

For the measurement of very small flow rates, due to the weight influence of the sensor coils it is common practice to use single-tube Coriolis flow metres. The sensor coils of dual-tube Coriolis sensors are mounted onto one of two measuring tubes, and as the diameters of the tubes are very small, they have a significant influence on the tube on which they are mounted.

Therefore, the influence of the sensor coils on the measurement results increases with decreasing tube diameter. For this reason, single tubes are often favoured for the measurement of very small flow rates, where the coils are mounted onto the chassis and not on the tube. However, with the use of just one measuring tube, the influence of external interference increases dramatically. To reduce this sensitivity and at the same time deliver accurate measurements at very small flow rates, Heinrichs Messtechnik has developed the dual-tube Coriolis principle to a new level. In this new state-of-the-art technology, the sensor coils are no longer mounted onto the tubes, but rather between them, thus freeing the measuring tubes from the influence of the coils’ weight, and allowing for extremely small tube diameters in the dual-tube design.

The result is the world’s smallest dual-tube Coriolis mass flow metre: high-precision measurements within 150 mm open gap in the measurement of small to strong vibrations. 180 °C, to pressures of up to 600 bar and ± 0.1%. Furthermore, the sensor shows performance Coriolis (HPC). With an

Instead of mounting the coils onto the tubes, the manufacturer chose to mount them onto a PCB situated between the measuring tubes. By simultaneously doubling the number of pick-up coils from two to four, the resolution is increased significantly. Source: Heinrichs Messtechnik GmbH

Reducing the influence of disturbances by positioning the sensor coils between the measuring tubes

“Due to the sensitivity of single-tube Coriolis sensors, a costly mechanical decoupling is often required, rendering them inappropriate for many applications. Our quest was therefore to find a means of unifying a dual-tube design with very small diameter tubes,” explains Schramm. Since the fundamental problem lies in the weight of the coils, which when compared with tube diameters of 1.5 mm or less presents a significant weight, Heinrichs Messtechnik adopted the following solution: a conventional approach of mounting the coils onto the tubes was abandoned in favour of their mounting on a printed circuit board placed between the tubes. This method also enables the use of four sensor coils instead of two, as is usually the case with a dual-tube Coriolis, providing a higher resolution.

On the measuring tubes themselves, only very light magnets are mounted, which, with a weight of only 0.08 g, have little to no influence on the vibrating behaviour of the tubes.

Instead of conventional brazing, the magnet holders are mounted onto the tubes using a special laser-welding technology. Utilising this method, Heinrichs Messtechnik aims to keep the production costs of the sensor to an absolute minimum, which not only allows for a stress free connection, but also eliminates the time-consuming and elaborate process of brazing in a vacuum oven.

Variable assembly concept

For flexible installations, different constructive variations of the HPC are available: besides the traditional inline version, which can be inserted directly into the process line, there are three further models available, which are suitable for either wall or table mounting.

The HPC was presented for the first time at the Hannover trade fair from 23–27 April, which was simultaneously the official sales launch. Furthermore, ATEx and IECEx approvals are also planned, as well as a patent registration of the technology. Parallel to the sales launch, Heinrichs Messtechnik is also working on a new miniaturised transmitter with flexible interfaces, which is specially designed for compatibility with the HPC.

For mass flow rates > 0 kg/h

For mass flow rates > 0 kg/h the HPC essentially consists of a solid, drilled and tapped stainless-steel block. The result is an extremely robust device capable of withstand temperatures and pressures of up to 180 °C and 600 bar, respectively. “In principle, the device may also be ordered with hastelloy-tubes and other alloys,” adds Schramm.

In contrast to the external influences using the dual-tube design, the new HPC dispenses with external interference from the sensor housing, the measuring tubes and the clamps俄罗斯和土耳其之间由于北溪-2管道以及乌克兰的能源问题导致一些复杂的政治和经济问题。为了实现俄罗斯和乌克兰之间能源合作的多元化和稳定化，需要采取更加积极和建设性的措施。首先，应该建立多层次的对话机制，涵盖政府、企业和社会各界。这样可以确保各方利益得到平衡。其次，应该加强国际合作，寻求跨国能源项目的支持。另外，应该鼓励更多企业参与，特别是在管道建设和运营方面。最终，需要建立一套有效的监管机制，确保整个能源合作过程的透明度和可预见性。
Gauge–gravity duality opens new horizons

In 1997, Juan Maldacena conjectured a deep relationship between gravity and quantum field theory that continues to offer insights into black holes and the search for quantum gravity.

What, in a nutshell, did you uncover in your famous 1997 work, which became the most cited in high-energy physics?

The paper conjectured a relation between certain quantum field theories and gravity theories. The idea was that a strongly coupled quantum system can generate complex quantum states that have an equivalent description in terms of a gravity theory (or a string theory) in a higher dimensional space. The paper considered special theories that have lots of symmetries, including scale invariance, conformal invariance and supersymmetry, and the fact that some of those symmetries were present on both sides of the relationship was one of the pieces of evidence for the conjecture. The main argument relating the two descriptions involved objects that appear in string theory called D-branes, which are a type of soliton. Polchinski had previously given a very precise description for the dynamics of D-branes. At low energies a soliton can be described as a particle, but at high energies it is the same, except that when you consider there is a non-Abelian SU(N) gauge symmetry that relates these positions. This low-energy theory resembles a collection of D-branes, with the number of states in which these D-branes can be arranged, and the number of states in which these D-branes can be arranged, and the number of states with N positions is like a collapsing wormhole that looks like two microscopic magnetically charged black holes joined by a wormhole.

One can find solutions of the Standard Model plus gravity that look like two microscopic magnetically charged black holes joined by a wormhole, Einstein–Rosen bridge, between the two systems. The Einstein–Rosen bridge can be described in terms of a gravity connection between two black holes present in the full Schwarzschild solution. Einstein–Rosen bridge between the two systems. The Einstein–Rosen bridge can be described in terms of a gravity connection between two black holes present in the full Schwarzschild solution.

In what sense does AdS/CFT allow us to discuss the interior of a black hole?

It gives us directly a view of a black hole from the outside, more precisely a view of the black hole from very far away. In principle, from this description we should be able to understand what goes on within the interior. While there has been some progress on understanding some aspects of the interior, a full understanding is still lacking. It is important to understand that there are lots of weird possibilities for black-hole interiors: we get from gravitational collapse the relativistically simple black-hole solutions, such as the full two-sided Schwarzschild solution, where the interior is shared between two black holes that are very far away. The full Schwarzschild solution can therefore be viewed as two very far-apart black holes in a particular state called the Schwarzschild–Bekenstein–Hawking black–hole–entropy given in terms of the area of the horizon. Such black holes have zero temperature. By slightly exciting these black holes some of us were attempting to extend this result to more general quantum states, which allowed us to probe the dynamics of those nearby extremal black holes. One of the most interesting recent lessons is the important role that entanglement plays in constructing the geometry of spacetime.

Are you surprised by its lasting impact?

Yes. At the time, I think it was going to be interesting for people thinking about quantum gravity and black holes. But the applications that people found to other areas of physics continue to surprise me. It is important for understanding quantum aspects of black holes. It was also useful for understanding very strongly coupled quantum theories. Most of our intuition for quantum field theory is built on weakly coupled theories, but interesting new phenomena can arise in strongly-coupled theories. These examples of strongly coupled theories can be viewed as useful calculable toy models. The art lies in extracting the right lessons from the examples we have in order to apply them to real-world systems.

What does the gravity–duality tell us about nature, given that it relates two pictures (e.g., involving different dimensionalities of space) that have not yet been shown to correspond in any one world?

It suggests that the quantum description of spacetime can be in terms of degrees of freedom that are not localized in space. It also says that there are quantum aspects of the wormhole, which is like a collapsing wormhole that closes off before a signal can go through. There is no signal, but there’s a necessary condition for the interpretation of these geometries as entangled states, since we cannot know the state of a large surface using entanglement. Suskind and myself have emphasized that the wormhole via the “EPR” view. This says that EPR correlations (or entanglement) should generally correspond to some sort of “geometric” connection, or one can find solutions of the Standard Model plus gravity that look like two microscopic magnetically charged black holes joined by a wormhole.

For a strongly coupled quantum system, what, in a nutshell, did you uncover in your famous 1997 work, which became the most cited in high-energy physics?

The paper conjectured a relation between certain quantum field theories and gravity theories. The idea was that a strongly coupled quantum system can generate complex quantum states that have an equivalent description in terms of a gravity theory (or a string theory) in a higher dimensional space. The paper considered special theories that have lots of symmetries, including scale invariance, conformal invariance and supersymmetry, and the fact that some of those symmetries were present on both sides of the relationship was one of the pieces of evidence for the conjecture. The main argument relating the two descriptions involved objects that appear in string theory called D-branes, which are a type of soliton. Polchinski had previously given a very precise description for the dynamics of D-branes. At low energies a soliton can be described as a particle, but at high energies it is the same, except that when you consider there is a non-Abelian SU(N) gauge symmetry that relates these positions. This low-energy theory resembles a collection of D-branes, with the number of states in which these D-branes can be arranged, and the number of states in which these D-branes can be arranged, and the number of states with N positions is like a collapsing wormhole that looks like two microscopic magnetically charged black holes joined by a wormhole.

One can find solutions of the Standard Model plus gravity that look like two microscopic magnetically charged black holes joined by a wormhole, Einstein–Rosen bridge, between the two systems. The Einstein–Rosen bridge can be described in terms of a gravity connection between two black holes present in the full Schwarzschild solution.

In what sense does AdS/CFT allow us to discuss the interior of a black hole?

It gives us directly a view of a black hole from the outside, more precisely a view of the black hole from very far away. In principle, from this description we should be able to understand what goes on within the interior. While there has been some progress on understanding some aspects of the interior, a full understanding is still lacking. It is important to understand that there are lots of weird possibilities for black-hole interiors: we get from gravitational collapse the relativistically simple black-hole solutions, such as the full two-sided Schwarzschild solution, where the interior is shared between two black holes that are very far away. The full Schwarzschild solution can therefore be viewed as two very far-apart black holes in a particular state called the Schwarzschild–Bekenstein–Hawking black–hole–entropy given in terms of the area of the horizon. Such black holes have zero temperature. By slightly exciting these black holes some of us were attempting to extend this result to more general quantum states, which allowed us to probe the dynamics of those nearby extremal black holes. One of the most interesting recent lessons is the important role that entanglement plays in constructing the geometry of spacetime.

Are you surprised by its lasting impact?

Yes. At the time, I think it was going to be interesting for people thinking about quantum gravity and black holes. But the applications that people found to other areas of physics continue to surprise me. It is important for understanding quantum aspects of black holes. It was also useful for understanding very strongly coupled quantum theories. Most of our intuition for quantum field theory is built on weakly coupled theories, but interesting new phenomena can arise in strongly-coupled theories. These examples of strongly coupled theories can be viewed as useful calculable toy models. The art lies in extracting the right lessons from the examples we have in order to apply them to real-world systems.

What does the gravity–duality tell us about nature, given that it relates two pictures (e.g., involving different dimensionalities of space) that have not yet been shown to correspond in any one world?

It suggests that the quantum description of spacetime can be in terms of degrees of freedom that are not localized in space. It also says that there are quantum aspects of the wormhole, which is like a collapsing wormhole that closes off before a signal can go through. There is no signal, but there’s a necessary condition for the interpretation of these geometries as entangled states, since we cannot know the state of a large surface using entanglement. Suskind and myself have emphasized that the wormhole via the “EPR” view. This says that EPR correlations (or entanglement) should generally correspond to some sort of “geometric” connection, or
Quirks in the quark story

Your tribute to Murray Gell-Mann (CERN Courier July/August 2019 pp25–31) missed interesting details about the history of the quark model. During the 1950s, 1960s and early 1970s, Gell-Mann was indeed a dominant figure in theoretical particle physics, making many seminal contributions, particularly to the classification of particles and their symmetries. These included the proposal of the strangeness quantum number, the SU(3) symmetry of hadrons and the eightfold way, current algebra and quarks. Others also contributed to some of these ideas, such as Kazuhiko Nishijima and Abraham Pais for strangeness and Yuval Ne’eman for SU(3). In recent years, the role of George Zweig in the quark story has been increasingly recognised. While a postdoc at CERN, on 17 January 1964, just a couple of weeks after Gell-Mann’s paper on quarks was received by Physics Letters (4 January, though rumour says it had previously been considered by Physical Review Letters), Zweig wrote a paper proposing hadronic constituents that he called “aces”, followed on 24 February by a more complete description of his model. Zweig’s ideas were treated with scepticism by the CERN theoretical leadership of the day, and he was denied permission to submit his work to a US journal. His papers remained unpublished, which undoubtedly diminished their impact. Less well known are the contributions of two other theorists. One was André Petermann of CERN, who proposed hadronic constituents in a paper that was submitted to Nuclear Physics on 30 December 1963, before Gell-Mann’s Physics Letters submission. However, the impact of Petermann’s work was reduced by the fact that he wrote his paper in French, and that publication was delayed until March 1964. Was this because of a sceptical referee, or perhaps Petermann’s dilatory handling of the proofs? Additionally, there are no records of Petermann ever making any effort to publicise these ideas.

Digging deeper, according to Robert Serber (a professor at Columbia University at the time) in his book Peace & War, he came up with the idea of three constituents of hadrons in March 1963 while trying to understand representations of SU(3), and mentioned the idea to Gell-Mann over lunch when he came to give a colloquium at Columbia. Again, according to Serber, Gell-Mann immediately figured out that these constituents would have fractional charges, and said that their existence would be a strange quark of nature, and quark was jokingly transformed into quark.”

Serber also writes that he worked out shortly later that his model would make quite good predictions for the magnetic moments of the proton and neutron. However, Serber never published his idea, supposedly because he thought it must be familiar to the experts in the field. As a result, his claim to credit for the quark idea is weaker than that of Zweig or Petermann. However, Gell-Mann acknowledged him in his quark paper: “These ideas were developed ... In March 1963; the author would like to thank Professor Robert Serber for stimulating them.”

It took some time for the quark idea to gain wide acceptance, a contributing factor being Gell-Mann’s insistence for some time that quarks should be regarded as “purely mathematical” entities. For several years, one of the principal proponents of the reality of quarks was Richard Dalitz of Oxford University, who led the way in showing that the quark model gives an excellent description of the spectrum of strongly interacting particles. But the quark model did not gain general acceptance until sometime after the advent of deep-inelastic electron–neutrino–hadron scattering. These results also provided the first tentative evidence for the physical reality of gluons, which Gell-Mann had also doubted.

The proposal of a new underlying layer of strongly-interacting constituents required considerable remoulding and met widespread doubts; perhaps it is not surprising that many of its proponents were so timorous?

John Ellis King’s College London.

To further details about the early history of quarks can be read in an article by CERN theorist Álvaro De Rújula (CERN Courier May 2014 pp5) and on cerncoursier.com.

When Compromise is Not an Option.
High-Performance Digitizers for Big Physics Applications

Digitizers from Teledyne SP Devices utilize patented calibration technology, the latest data converters, and state-of-the-art FPGAs in order to achieve an unrivaled combination of high resolution and sampling rate. Their versatility makes them ideal for applications such as beam position monitoring, plasma diagnostics, and more.

Supported features include:
- Up to 10 GSPS sampling rate with 14 bits resolution
- Open FPGA for custom real-time signal processing
- Multiple form factors including MTCA.4, PXIe and PCIe
- Multi-channel synchronization capabilities
- White Rabbit synchronization (MTCA.4 only)
- Peer-to-peer streaming to GPU (PCIe only)
- Application-specific firmware speed up development

A currently popular sentiment in some quarters is that theoretical physics has dived too deeply into mathematics, and lost contact with the real world. Perhaps, it is surmised, the edifice of quantum gravity and string theory is in fact a contrived Rube–Goldberg machine, or a house of cards that is about to collapse – especially given that one of the supporting pillars, namely supersymmetry, has not been discovered at the LHC. Graham Farmelo’s new book sheds light on this issue.

The universe speaks in numbers, reads Farmelo’s title. With hindsight this allows a double interpretation: first, that it is primarily mathematical structure which underlies nature. On the other hand, one can read it as a caution that the universe speaks to us purely via measured numbers, and theorists should pay attention to it. The majority of physicists would likely support both interpretations, and agree that there is no commerce between them.

The author, who was a theoretical physicist before becoming an award-winning science writer, does not embark on a detailed scientific discussion of these matters, but provides a historical narrative of the relationship between mathematics and physics, and their tightly correlated evolution. At the time of the ancient Greeks, there was no distinction between these fields, and it was only from about the 19th century onwards that they were viewed as separate. Evidently, a major factor was the growing role of experiments, which provided a firmer grounding in the physical world than what had previously been called natural philosophy.

The book follows the mutual fertilisation of mathematics and physics through the last few centuries as the disciplines gained momentum with Newton, and exploded in the 20th century. Along the way it peaks into the thinking of notable mathematicians and physicists, often with strong opinions. For example, Dirac, a favourite of the author, is quoted as reflecting both that “Einstein failed because his mathematical basis... was not broad enough” and that “theoretical physicists should not allow themselves to be distracted by every surprising experimental finding”. The belief that mathematical structure is at the heart of physics and that experimental results ought to have secondary importance holds sway in this section of the book. Such thinking is perhaps the result of selection bias, however, as only scientists with successful theories are remembered.

The detailed exposition makes the reader vividly aware that the relationship between mathematics and physics is a roller coaster loaded with mutual admiration, contempt, misunderstandings, split-ups and re-marriages. Which brings us, towards the end of the book, to the current state of affairs in theoretical high-energy physics, which most of us, in the profession would agree is characterised by extreme mathematical and intellectual sophistication, paired with a stunning lack of experimental support. After many decades of flourishing theory play, which provided, for example, the group-theoretical underpinning of the quark model, the geometry of gauge theories, the algebraic geometry of supersymmetric theories and finally strings, is there a new divorce ahead? It appears that some not only desire, but relish the lack of supporting experimental evidence. This concern is also expressed by the author, who criticises self-declared experts who “write with a confidence that belies the evident slightness of their understanding of the subject they are attacking.”

The last part of the book is the least readable. Based on personal interactions with physicists, the exposition becomes too detailed to be of use to the casual, or lay reader. While there is nothing wrong with the content, which is exciting, it will only be meaningful to people who are already familiar with the subject. On the positive side, however, it gives a lively and accurate snapshot of today’s sociology in theoretical particle physics, and of influential but less well known characters in the field.

The Universe Speaks in Numbers illuminates the role of mathematics in physics in an easy-to-grasp way, exhibiting its detail in a way that makes it interesting reading for anyone, the book is best suited for particle physicists who are close to the field.

Wolfgang Lerche CERN
The Consolations of Physics: Why the Wonders of the Universe Can Make You Happy

By Tim Radford

As someone who lives and breathes physics every day, I have to confess that when I curl up with a book, it’s usually some sort of popularisation of science. But when I saw that Tim Radford had written such a book, and that it was all about how physics can make you happy, I went straight to the top of my reading list.

Despite Radford’s refusal to be pigeon-holed as a science journalist, insisting he was science correspondent for The Guardian for a quarter of a century. Now retired, he remains one of the most respected science writers around.

The Voyager mission, along with LIGO and the LHC, serves as a guiding thread through Radford’s vast and winding exploration of human curiosity. Right from the opening lines, the reader is taken on a breathtaking tour of the full spectrum of human inventiveness, from science to religion, and from art to philosophy. On the way, we encounter thinkers as diverse as St Augustine, Damo and H3 Wells. Boethius, who took consolation in philosophy as he languished in a sixth-century jail; another recurring presence in the book’s title being a nod to him.

We’re treated to a concise and clear consideration of the roles of science and religion in human societies. “Religious devotion demands unquestioning faith,” says Radford, whereas “science demands a state of mind that is always open to doubt”. While many can enjoy both, he concludes that it may be easier to enjoy science because it represents truth in a way that can be tested.

No sooner have we dealt with religion than we find ourselves listening to echoes of the great Richard Feynman as Radford considers the beauty of a dead-laden cobweb on an English autumn morning. “Does it make it any less magical a sight to know that this web was spun from a protein inside the spider’s?” he asks, bringing to mind Feynman’s wonderful monologue about the beauty of a flower in Christopher Stiles’ equally wonderful new documentary, The Pleasure of Finding Things Out. Both conclude that science can only enhance the aesthetic beauty of the natural world.

The Weil Conjectures

By Karen Olsson

“J’ai moins d’intérêt en mathématiques que je n’y avais des mathématiques,” wrote Simone Weil to her brother André, a world-class mathematician who was imprisoned in Rouen at the time. The same might be said about US novelist and onetime mathematics student Karen Olsson. Despite the title, her new book, The Weil Conjectures, is all about mathematics.

First conceived by André in prison, and finally proven three decades later by Pierre Deligne in a series of ground-breaking conjectures are foundational pillars of algebraic geometry. Linking the continuous and the discrete, and the real and the complex, the numbers need no longer be pertinent to efforts toward practical applications. Conversely, the conjectures of other theories can now be addressed more easily. And, strangely enough, everyone is reading this book. Olsson is particularly fascinated by mathematicians – Girolamo Cardano is described as a “total dick” – and more a succession of scenes than a biography, the book is as much about Olsson herself as the Weis. The prose zig-zags between vignettes from the author’s own life and the Weis without warning, leaving the reader to search for connections. For example, unsoured, and readers are left to guess what is historical and what is the author’s impressionistic character portrait. Charming and quirky, the text transforms dusty perceptions of the meetings of the secret Bourbaki society of French mathematicians into scenes of the Weis’ daily life, and the stories told by the Weis are as true as they are original.

Mark Rayner CERN

R&K Company Limited

www.janis.com/CryogenFreeProbeStation.aspx

Contact us today:

sales@janis.com

www.inradoptics.com | 201-767-1910

Stilbene. The gold standard in neutron-gamma PSD.

Scintillin™ stilbene

NOW AVAILABLE IN SIZES UP TO 5 INCHES

EASY INTEGRATION WITH PMP AND 5PM

DIRECT DETECTION OF FAST NEUTRONS

www.inradoptics.com | 201-767-1910

R&D...
Energy Density Functional Methods for Atomic Nuclei

Edited by
Nicolas Schunck

In the past 20 years, energy density functional (EDF) approaches have become a powerful framework to study the structure and reactions of atomic nuclei. This book provides an updated presentation of non-relativistic and covariant energy functionals, single- and multi-reference methods, and techniques to describe small- and large-amplitude collective motion or nuclei at high excitation energy. Detailed derivations, practical approaches, examples and figures are used throughout the book to give a coherent narrative of topics that have hitherto rarely been covered together.

Nicolas Schunck is research scientist at Lawrence Livermore National Laboratory. His work is centred on the development and applications of computational methods for nuclear energy density functional theory, with a particular focus on the development of a fundamental description of nuclear fission.

To access this title visit iopscience.org/books. If you have an idea for a book you’d like to discuss please e-mail ebooks@ioppublishing.org.

IOP | eBooks

People should not feel disappointed for having to move outside physics

Eleni Mountricha describes her transition from ATLAS physicist to data scientist in a satellite communications firm.

In 2018, Eleni Mountricha’s career in particle physics was taking off. Having completed a master’s thesis at the National Technical University of Athens (NTUA), a PhD jointly with NTUA and Université Paris-Sud, and a postdoc with Brookhaven National Laboratory, she had just secured a fellowship at CERN and was about to select a research topic. A few weeks later, she ditched physics for a career in industry. Having been based at CERN for more than a decade and a half, and as a member of the ATLAS team working on the Higgs boson, at the time of its discovery in 2012, leaving academia was one of the toughest decisions she has faced.

“On the one hand I was looking for a more permanent position, which looked quite hard to achieve in research, and on the other, in the past years after the Higgs-boson discovery, my excitement and expectation about more new physics had started to fade,” she says. “There was always the hope of staying in academia, conducting research and exploring new fields of physics. But when the idea of possibly leaving kicked in, I decided that I should explore the potential of all alternatives.”

Mountricha had just completed initial discussions about her CERN research project when she received an offer from a permanent contract at Inmarsat – a provider of mobile satellite communications based in the nearby Swiss town of Yverdon. It was unexpected, given how few positions she had applied for: “I felt a mixture of happiness and satisfaction at having succeeded in something that I didn’t expect I had many chances for, and frustration at the prospect of leaving something that I had spent many years on with a lot of dedication,” she explains.

“What made it even harder was the discussions with other CERN experiments during the first months of the fellowship, which sparked my physics excitement again.”

New pastures

Mountricha’s idea to leave physics first formed after attending, out of curiosity, a career networking event for LHC-experiment physicists in November 2017: “The main benefit I got out of the event was a feeling that, even if I left, this would not be the end of the world, and that, if I searched enough, I could always find exciting things to do.” The networking event now takes place annually. The Inmarsat job was brought to Mountricha’s attention by a fellow CERN alumnus and was the only job that she had applied for outside of physics. “I believe that I was lucky but I also invested a lot of personal time to polish my skills for the interview and, in the end, it all came together,” she says.

“Today, Mountricha’s official job title is ‘aero-service performance manager’,” she adds. “I work in the data-science team of the company’s aviation department collecting and reporting on data about aircraft connectivity and usage. This involves the use of Python, to develop custom applications, analysing data using Python and SQL, and developing reporting and monitoring tools such as web applications. Her daily tasks vary from monitoring tools such as web applications, analysing data using Python and SQL, and developing reporting and monitoring tools such as web applications, to developing custom applications, analysing data using Python and SQL, and developing reporting and monitoring tools such as web applications,”

“People should not feel disappointed for having to move outside physics,” says Mountricha. “The announcement of the discovery was made in July, the papers were published in August and defended my PhD thesis in September, so there was much pressure to finalise my work for all of those deadlines,” recalls Mountricha. “Even the times when I was sleeping on my PC, exhausted, I still remember them with love and nostalgia. In particular, I remember the day of the announcement of the discovery, there were people sleeping outside the main auditorium the night before in order to make it to the presentation. As a result, I ended up watching it remotely from building 40 together with the whole analysis team. I was slightly disappointed not to be physically present in the packed auditorium, but this nevertheless remains such an important moment of my life.”

Dorottia Galanis and Matthew Chalmers CERN
people careers

Appointments and awards

Spiro appointed IUPAP president
Prominent French particle physicist Michel Spiro has been appointed president of the International Union of Pure and Applied Physics (IUPAP), replacing theorist Kennedy Reed of Lawrence Livermore National Laboratory. IUPAP, which aims to stimulate and promote international cooperation in physics, was established in 1922 with 13 member countries and now has close to 66 members. Spiro, who participated in the U3 experiment, the GALLEX solar–neutrino experiment and the EROS microlensing dark-matter search, among other experiments, has held senior positions in the French CNRS and IReS, and was president of the CERN Council from 2010 to 2013.

Breakthrough Prize for black-hole image
The first direct image of a black hole, realised by the Event Horizon Telescope (EHT), a network of eight radio dishes that creates an Earth-sized interferometer earlier this year, has been recognised by the 2020 Breakthrough Prize in Fundamental Physics. The $3 million prize will be shared equally between 347 researchers who were co-authors of the six papers published by the EHT collaboration on 10 April. Also announced were six New Horizons Prizes worth $200,000 each, which recognise early-career achievements. In physics, Jo Dunkley (Princeton), Saana Ahonen (University of Amsterdam) and Kendrick Smith (Perimeter Institute) were rewarded for the development of novel techniques to extract fundamental physics from astronomical data. Simon Canin – now at McGill University and Pedro Vieira (Perimeter Institute) were recognised for their “profound contributions to the understanding of quantum field theory”.

Giorgi and Nakada share Fermi Prize
Marcello Giorgi (above) of the University of Pisa and Tatsuya Nakada (below) of the Swiss Federal Institute of Technology in Lausanne (EPFL) have been awarded the Enrico Fermi Prize. The European Physical Society has established the prize in honour of the Italian theoretical physicist. Giorgi and Nakada’s research has contributed to the experimental evidence of CP violation in the heavy-quark sector. Giorgi is cited “for his leading role in experimental high-energy particle physics with particular regard to the Hubble experiment and the discovery of CP-symmetry violation in the B meson systems with beauty quarks”, while Nakada is recognised for his conception and crucial leading role in the realisation of the LHCb experiment that led earlier this year to the discovery of CP violation in D mesons with charm quarks. The prize was presented on 19 September during the opening ceremony of the 95th national congress of the Italian Physical Society in L’Aquila, Italy.

Brightness Award for ion source
Anatoli Zelenoski (below) of Brookhaven National Laboratory is the recipient of the 2019 Brightness Award, presented at the International Conference on Ion Sources (ICIS) held in September in Lanzhou, China. Granted since 2003 at the biennial ICIS conferences, the award recognises significant recent achievements in ion-source physics and technology. Zelenoski was recognised for his outstanding work in the development of high-current, optically pumped polarised ion sources. By replacing Brookhaven’s usual electron cyclotron resonance (ECR) proton source with a hydrogen injector and helium–ioniser cell inside a new 5 T superconducting solenoid, he increased the polarised H output of the optically pumped polarised ion source by three orders of magnitude. Fundamental Physics – leading to a reduction in polarisation losses at the relativistic heavy ion Collider.

Prize theses in CMS
Young researchers Thomas James (above), Joseph Pata (middle) and Daniel Salerno (bottom) have won the CMS prize for best thesis defended in 2018. James received his PhD from Imperial College, London, for his crucial work towards the upgrade of the CMS tracker. Pata and Salerno, who received their PhDs from ETH Zurich and the University of Pisa and Tatsuya Nakada (below) of the Swiss Federal Institute of Technology in Lausanne (EPFL) have been awarded the Enrico Fermi Prize. The European Physical Society has established the prize in honour of the Italian theoretical physicist. Giorgi and Nakada’s research has contributed to the experimental evidence of CP violation in the heavy-quark sector. Giorgi is cited “for his leading role in experimental high-energy particle physics with particular regard to the Hubble experiment and the discovery of CP-symmetry violation in the B meson systems with beauty quarks”, while Nakada is recognised for his conception and crucial leading role in the realisation of the LHCb experiment that led earlier this year to the discovery of CP violation in D mesons with charm quarks. The prize was presented on 19 September during the opening ceremony of the 95th national congress of the Italian Physical Society in L’Aquila, Italy.

Brightness Award for ion source
Anatoli Zelenoski (below) of Brookhaven National Laboratory is the recipient of the 2019 Brightness Award, presented at the International Conference on Ion Sources (ICIS) held in September in Lanzhou, China. Granted since 2003 at the biennial ICIS conferences, the award recognises significant recent achievements in ion-source physics and technology. Zelenoski was recognised for his outstanding work in the development of high-current, optically pumped polarised ion sources. By replacing Brookhaven’s usual electron cyclotron resonance (ECR) proton source with a hydrogen injector and helium–ioniser cell inside a new 5 T superconducting solenoid, he increased the polarised H output of the optically pumped polarised ion source by three orders of magnitude. Fundamental Physics – leading to a reduction in polarisation losses at the relativistic heavy ion Collider.

Applicants must have a Ph.D. in particle physics or a closely related field, an outstanding record of research accomplishments, and evidence of potential excellence in teaching at both the undergraduate and graduate levels. Candidates are expected to develop vigorous research programs, supervise graduate students, and teach both undergraduate and graduate level courses.

The Department and College
The Department has 57 tenure and tenure-track professors, 150 graduate students, and over 250 undergraduates. Over the last 5 years the Department has added 14 faculty and significant investment has been made in our key areas of discovery. The College and Department have launched initiatives in new emerging areas, such as Data Science and Quantum Information Science, and committed the resources necessary to make the new growth impactful.

Physics and Astronomy is part of the College of Science, which comprises the computing, physical, and life sciences at Purdue. It is the second-largest college at Purdue, with over 450 faculty and over 6000 students. Purdue itself is one of the nation’s leading land-grant universities, with an enrollment of over 41,000 students primarily focused on STEM subjects. For more information, see https://www.purdue.edu/purdumoves/initiatives/stem/index.php.

Application Procedure
Applications need to be submitted to https://careers.collegeofsemphysics.purdue.edu/ jobs/1213089/apply by December 1st. All candidates must include (1) a complete curriculum vitae, (2) a publication list, (3) a brief statement of present and future research plans, and (4) a statement of teaching philosophy.

In addition, candidates should arrange for at least 3 letters of reference to be sent to jps@semi.purdue.edu.

Questions regarding the position and search should be directed to neumeister@purdue.edu.

Applications completed by November 15, 2019 will be given full consideration, although the search will continue until the position is filled.

Purdue University’s Department of Physics and Astronomy is committed to advancing diversity in all areas of faculty effort, including scholarship, instruction, and engagement. Candidates should address at least one of these areas in their cover letter, indicating their past experiences, current interests or activities, and/or future goals to promote a climate that values diversity and inclusion. A background check will be required for employment in this position.

Purdue University is an EEO/AA employer. All individuals, including minorities, women, individuals with disabilities, and veterans are encouraged to apply.
Deutsches Elektronen-Synchrotron DESY
A Research Centre of the Helmholtz Association

For our location in Hamburg we are seeking:

Scientist for the Low Level RF Controls of the European XFEL (LLRF)

DESY

DESY is one of the world’s leading research centres for photon science, particle and astroparticle physics as well as accelerator physics. More than 2400 employees work at our locations Hamburg and Zeuthen in science, technology and administration.

The group MKS is responsible for the controls, feedback regulations and synchronization of the particle accelerators at DESY. We are looking for motivated and experienced employees who develop, install and operate complex instruments, specifically the European X-Ray Free-Electron Laser.

The position
• Further development of high precision field control of the superconducting cavities at the European XFEL
• Coordination of LLRF systems operation with the XFEL machine operation group
• Quality control towards optimal operation of the LLRF system and inspection of RF trips
• Operation analysis and further development of the field regulation and automation algorithms
• Documentation and maintenance of the LLRF systems

Requirements
• PhD degree in Physics, Electronics or Computer Science or equivalent qualification
• Several years experience in RF control of superconducting particle accelerators
• Advanced understanding of the system architecture and operation of particle accelerators
• Skills in automation and system control
• Computer science skills in Linux, Python, Firmware and Software
• Strong motivation and pragmatism towards problem solving as well as highly proficient English skills

For further information please contact Julen Brantard
+49-40-8998-1039.

The position is limited to 3 years.

Salary and benefits are commensurate with those of public service organisations in Germany. Classification is based upon qualifications and assigned duties. Handicapped persons will be given preference to other equally qualified applicants. DESY operates flexible work schemes. DESY is an equal opportunity, affirmative action employer and encourages applications from women. Vacant positions at DESY are in general open to part-time employees.

We are looking forward to your application via our application system: www.desy.de/onlineapplication

Deutsches Elektronen-Synchrotron DESY
Human Resources Department / Code: MNA04/2019
Notkestraße 85 | 22607 Hamburg Germany
Phone: +49 40 8998-3392
http://www.desy.de/career

Deadline for applications: Until the position is filled.

Helmholtz Research for Grand Challenges

Gain unique insights on the latest research and project developments in particle physics and related fields.
cerncourier.com

The Laser Interferometer Gravitational-Wave Observatory (LIGO) has as its goal the development of gravitational wave physics and astronomy. The LIGO Laboratory is managed by Caltech and MIT, and is funded by the National Science Foundation. It operates observatory sites equipped with laser interferometric detectors at Hanford, Washington and Livingston, Louisiana, which recently made the first confirmed detection of gravitational waves. A vigorous LIGO Laboratory R&D program supports the development of enhancements to the LIGO detector as well as astrophysical data analysis, and development of future detectors and detector technologies.

The LIGO Laboratory anticipates having one or possibly more postdoctoral research positions at one or more of the LIGO sites – Caltech, MIT and at the two LIGO Observation in Hanford, WA and Livingston, LA – beginning in Fall 2019. Hires will be made based on the availability of funding. Successful applicants will be involved in the operation of LIGO itself, analysis of LIGO data, both for diagnostic purposes and astrophysics searches, and the R&D program for future detector improvements. We seek candidates across a broad range of disciplines. Expertise related to astrophysics, modeling, data analysis, electronics and laser and quantum optics, vibration isolation and control systems is desirable. Most importantly, candidates should be broadly trained scientists, willing to learn new experimental and analytical techniques, and ready to share in the excitement of building, operating and observing with a gravitational-wave observatory. Appointments at the post-doctoral level will initially be for one-year with the possibility of renewal for up to two subsequent years.

Caltech and MIT are Affirmative Action/Equal Opportunity Employers. Women, Minorities, Veterans, and Disabled Persons are encouraged to apply.

More information about LIGO available at www.ligo.caltech.edu
The Rheinische Friedrich-Wilhelms-Universität Bonn is an international research university that offers a wide range of degree programs. With 200 years of history, about 38,000 students, over 6,000 employees, and an excellent domestic and international reputation, Bonn University is among Germany’s leading universities and has just been awarded the title of University of Excellence. The Department of Physics and Astronomy of the Rheinische Friedrich-Wilhelms-Universität Bonn invites applications for the position of

Professor or Assistant Professor (Tenure Track) of Theoretical Cosmology

The Department of Physics (www.phys.ethz.ch) at ETH Zurich invites applications for the above-mentioned position. Successful candidates are outstanding scientists in the field of theoretical cosmology and will perform pioneering theoretical research in the exploration of the fundamental laws of nature. The new professor will aim to formulate new realistic theories which extend the current framework of fundamental physics and provide the deep questions about the origin and evolution of the universe. Eth Zurich implements a tenure track system equivalent to other top international universities. The level of appointment will depend on the successful candidate’s qualifications.

Your profile:
- University degree and PhD in Physics
- Relevant experience in project coordination
- Experience in the design, construction, test and operation of particle detectors
- Ability to cooperate and work in a team
- Experience in human resource management
- Fluent in German and English.

We offer:
- Permanent full-time employment, salary scale E 1 TVL
- Responsible, multi-faceted and challenging field of work
- Participation in cutting-edge international research projects
- Occupational retirement scheme (VBL)
- An excellent transport infrastructure with the opportunity to obtain a discounted employee ticket for public transport (VRS) or to use assigned affordable parking.

The University of Bonn is committed to diversity and equal opportunity. It is certified as a family-friendly university and aims to increase the proportion of women employed in cases where women are under-represented and to promote their careers. It does not use gender-related qualifications to apply. Applications will be handled in accordance with the Landesgleichstellungsgesetz (State Equality Act). Applicants from suitable candidates with a court decided disability status or equivalent status are particularly warmly welcomed.

Complete applications (consisting of a CV, certificates, list of publications, and a letter of motivation) should be submitted until 30th of November 2019 via email or as a single PDF file to sprecher@ftd.unibonn.de with the application code: 19/2131.

For further information please contact Prof. Dr. M. Dongfelder (Tel.: +49/228-73 3532) or Prof. Dr. B. Kutter (Tel.: +49/228-73 2537).
Ernst-Wilhelm Otten 1934–2019

Breadth and eminence across disciplines

Ernst-Wilhelm Otten received his doctorate in 1962 at the University of Heidelberg under the supervision of atomic and nuclear physicist Hans Kopfermann. From 1972 until his retirement in 2002, he headed the department of experimental atomic and nuclear physics (EXAKT) at the University of Mainz. Ernst spent numerous research stays abroad, including at CERN and at the École Normale Supérieure in Paris. After his retirement Ernst continued his research activities, especially for the KATRIN neutrino experiment. The hallmark of his mark was the extraordinary breadth across almost all disciplines of physics, with which earned him a large number of distinctions and prizes.

In Heidelberg, Ernst developed the method of optical pumping for polarising the nuclear spins of radioactive isotopes to determine their natural moments. He also recognised, from its start-up in the late 1960s, the opportunities offered by the on-line isotope separa
tor ISOLDE at CERN. He became a pioneer of optical spectroscopy with accelerators. The discovery of unexpected nuclear–shape coexistence and nuclear–size changes in neutron–deficient mercury isotopes is one of the most outstanding results obtained at ISOLDE, as reported a 30 eV mass of the anti-neutrino. Ernst developed a novel high-resolution beta spectrometer at Mainz to determine the neutrino mass very precisely from tritium decay. Together with his team he succeeded in setting an upper limit of 2 eV. After the discovery of neu
trino oscillations in 1998, proving the existence of finite neutrino masses, Ernst initiated the KATRIN experiment at the Karlsruhe Institute of Technology to measure the neutrino mass. The construction of this technically extremely difficult spectrometer started in 2001, and Ernst was very actively involved until his death on 8 July. As such, he was able to witness the first successful result: the setting of a new upper limit on the neutrino mass of 10 eV (see p7).

Ernst leaves deep traces in science and in the physics community. We will remember him as a great scientist, teacher, mentor and friend.

Jörgen Goodman, colleagues and friends University of Maryland.

Gaurang Bhaskar Yodh 1928–2019

From the ground to the skies

Gaurang Yodh, a passionate particle and cosmic-ray physicist and musician, passed away on 3 June at age 90. He was born in Ahmadabad, India. After graduating from the University of Bombay in 1948, he was recruited by the University of Chicago to join the group of Enrico Fermi and Herb Anderson. After Fermi’s death in 1954, he finished his PhD with Anderson in 1955, after which he moved to Stanford where he worked with Wolfgang Panofsky. He and his wife returned to Bombay (Mumbai) in 1956, where he started accelerator physics programmes at the Tata Institute of Fundamental Research, but he was lured back to the US and took the method of optical pumping to ground level, in a helium-filled tank as well as a lightweight Kevlar window separating the helium from a vacuum tank. Early on, the group designed and constructed an automatic machine for winding large wire spark chambers and soon became specialised in the construction of arrays for the multiwire proportional chambers. Led by Giovanni, the group developed equipment and facilities for Chernov detectors, including a dry lab for handling titanium foil and methods of producing precision glass spherical mirrors coated with highly reflecting aluminium coatings. Mirrors made using these techniques were later used in the RICH detector at LEP’s DELPHI experiment. Towards the end of his CERN career he worked on the initial designs of the TPC detector for another LEP detector, ALEPH. He also started a collaboration with a group searching for the existence of a “fifth force” and designed and built a rotor that generated a 6 kHz gravitational field at around 50 Hz, which was used in the first absolute calibration of the gravitational wave detector EXPLORER at CERN.

Giovanni remained at CERN for several years after his retirement in 1996, during which he worked on many problems including the initial design of a prototype liquid argon chamber for use in underground experiments at Gran Sasso. He was a super engineer. His work was highly appreciated and his opinions respected. He participated actively in the design of equipment with innovative and ingenious ideas. He also loved solving machining and manufacturing problems, whether on a large or Swiss–watch scale. With his com-

Ernst Otten initiated the KATRIN neutrino experiment, among many other achievements.

During his time at ISOLDE, Ernst developed the method of optical pumping for polarising the nuclear spins of radioactive isotopes to determine their natural moments.
BACKGROUND

Notes and observations from the high-energy physics community

Doomsayers decired

Railing against the notion that the world is sinking into chaos, hatred and irrationality, cognitive psychologist Steven Pinker of Harvard University brought rapid-fire feel-good factoids to the CERN auditorium on 10 October. His colloquium “Enlightenment now: the case for mass, science, humanism, and progress,” after his 2018 book of the same name, saw the best and brightest and sometimes controversial academic flash numerous plots suggesting a relentless upward trend in human progress, which he attributes to enlightenment values. Life expectancy has risen from 35 to 80 in 250 years, child mortality is down by a factor 100, and there has been a 75% reduction in extreme poverty in the last 30 years alone. Human morality is now legal in the vast majority of the world, and the death penalty abolished – along with witch-hunts and duelling. We’ve never enjoyed such levels of freedom, democracy, literacy, safety and happiness, he claimed. Even deaths from lightning strikes are plummeting. Met with resilience scepticism, Pinker’s rejoinder was that the news we consume is strongly biased towards the negative. “Progress is something intellectuals don’t like,” he said. “But it is an empirical issue.”

From the archive: November/December 1976

Prowess and prizes

Wim Klein (right), the human computer, has retired after 18 years in the Theory Division. His phenomenal abilities at mental arithmetic are legendary. Probably few millennial readers will have heard of Wim Klein, an idiosyncratic Dutchman of prodigious mathematical acuity. Wim led a colourful though not always happy life between science and circus. At CERN he filchedachusno-pap, outpacing mechanical desk calculators but sadly becoming redundant when electronic computers took over. On 27 August 1976 Wim calculated the 73rd root of a 500-digit number in 3 minutes and 43 seconds, delighting the CERN audience and earning a place in the Guinness World Records. A keen supporter of the British Academy, Wim has never been a Nobel laureate.

UK research rebranded

On 10 October UK Research and Innovation (UKRI) – a recently created body to direct government funding via the UK’s major research councils – announced new branding “to support its vision and ambition as a world-class funder”. The logo for UKRI’s Science and Technology Facilities Council (STFC), which deals with high-energy physics (pictured), will soon replace existing ones that have been taking root across STFC’s sites since 2007 when STFC was created. “UKRI has an important role to play and an important story to tell. The unified brand will help us to communicate this story nationally and internationally,” said UKRI chief executive Mark Walport.

Brexit bites science

On 16 October the UK’s The Royal Society published a report stating that, due to Brexit uncertainty, the UK is becoming a less attractive destination for top international science talent. Despite government undertakings in the event of no-deal Brexit, it finds the UK’s annual spend on EU research funding has fallen by £6.5 billion since 2015, with almost a 40% drop in applications to Horizon 2020 and some 35% underwrites in the event of a no-deal Brexit, it finds the UK’s annual receive fewer scientists arriving via Marie Skłodowska-Curie fellowships. Not many people understand the complication of extracting, for example, the 73rd root of a 500-digit number. Wim marked his departure with a “Farewell Show” in the CERN Auditorium on 10 December. The 1976 physics Nobel Prize was shared equally between Burt Richter, SLAC, and Sam Ting, MIT, who led the teams which found the J/ψ just two years ago, cited as “a heavy elementary particle of a new kind”. This rapid recognition reflects the dramatic effect of the J/ψ on the world of high-energy physics – so dramatic that since the events of 1974, we talk of “the new physics.”

“Salam was the first Pakistani to win a Nobel, and his victory should have been a historic moment for the country. But instead, 40 years on, his story has largely been forgotten by the country in which he was born – in part because of the religious identity he held so dear.” BBC Online (10 October) reviews a new film about Abdus Salam titled The Fire *****(Nobel Laureate). “Why jump ship [if the vessel’s still going strong, even though we don’t fully understand how it functions?].” A philosopher of science Michel Mazzini referring to the Standard Model in an article about model independence in the September issue of Physics World.

“According to the UK Public Attitudes to Science Survey, 79% of those surveyed agree that even if it brings no immediate benefits, research that advances knowledge should be publicly funded.” President of the British Academy David Cannadine on the historical importance of blue-sky research (New Scientist, 12 October).

“Concentric rings of gold and candy-apple red detectors encircle a contract of electrostatic fields above which a laboratory staff member is busy working.” From the archive: November/December 1976.

UKRI from the media: November/December 2019

From the archive: November/December 1976

Prowess and prizes

Wim Klein (right), the human computer, has retired after 18 years in the Theory Division. His phenomenal abilities at mental arithmetic are legendary. Probably few millennial readers will have heard of Wim Klein, an idiosyncratic Dutchman of prodigious mathematical acuity. Wim led a colourful though not always happy life between science and circus. At CERN he filchedachusno-pap, outpacing mechanical desk calculators but sadly becoming redundant when electronic computers took over. On 27 August 1976 Wim calculated the 73rd root of a 500-digit number in 3 minutes and 43 seconds, delighting the CERN audience and earning a place in the Guinness World Records.

Compiler’s note

Number of people, across 170 countries, who took part in the LiC’s first mass-participation citizen science project “Higgs Hunters”, initiated by physicists at the University of Oxford.

Media corner

“Salam was the first Pakistani to win a Nobel, and his victory should have been a historic moment for the country. But instead, 40 years on, his story has largely been forgotten by the country in which he was born – in part because of the religious identity he held so dear.” BBC Online (10 October) reviews a new film about Abdus Salam titled The Fire *****(Nobel Laureate). “Why jump ship [if the vessel’s still going strong, even though we don’t fully understand how it functions?].” A philosopher of science Michel Mazzini referring to the Standard Model in an article about model independence in the September issue of Physics World.

“The 1976 physics Nobel Prize was shared equally between Burt Richter, SLAC, and Sam Ting, MIT, who led the teams which found the J/ψ just two years ago, cited as “a heavy elementary particle of a new kind”. This rapid recognition reflects the dramatic effect of the J/ψ on the world of high-energy physics – so dramatic that since the events of 1974, we talk of “the new physics.”

“According to the UK Public Attitudes to Science Survey, 79% of those surveyed agree that even if it brings no immediate benefits, research that advances knowledge should be publicly funded.” President of the British Academy David Cannadine on the historical importance of blue-sky research (New Scientist, 12 October).

“Concentric rings of gold and candy-apple red detectors encircle a contract of electrostatic fields above which a laboratory staff member is busy working.” From the archive: November/December 1976.
High density channel solution for digital spectroscopy

V1782 (2-unit wide VME 6U module)

32k Octal Digital Multi-Channel Analyzer

CAEN is very proud to introduce its new Octal 32k Digital MCA. The V1782 is ideally designed for applications requiring high resolution detectors with multiple input channels. It is the perfect solution for your segmented HPGe, Clover, and Silicon Strip detector arrays!

- Eight independent 32k digital MCA in VME form factor
- Supports wide range of applications: Compton-suppressed HPGe, Low Background Spectroscopy with active shields, Multi-detector Systems, Whole-Body Counters, Clover, Segmented HPGe and SSD Readout
- Fully compatible with many other types of detectors, such as scintillators (NaI, LaBr3, CsI, etc.), CZT, PIPS and more
- 4+4 input ranges via jumper/software selectable coarse gain (x0.2, x0.4, x0.8, x1.6 and x1, x2, x4, x8 with x1 = 1 Vpp)
- TRP and RC preamps supported
- Acquisition modes: PHA, time stamped list, waveform, add-back, coincidence/anti-coincidence, gate/veto
- Supports multi-board synchronization for quick and easy development of large readout systems via front panel logic I/Os
- FWHM*: 0.75 - 0.85 keV @ 122 keV; 1.72 - 1.82 keV @ 1332 keV
- Fully controlled by CAEN MC2Analyzer and CoMPASS software

* Typical values depending on HPGe detector and source count rate.