Quark Matter 2025 is the XXXI international conference on ultra-relativistic nucleus–nucleus collisions, which will be held in Frankfurt, Hesse, Germany. This conference brings together theoretical and experimental physicists from around the world to discuss new developments in high-energy heavy-ion physics. The focus of the discussions is on the fundamental understanding of strongly-interacting matter at extreme conditions, as formed in ultra-relativistic nucleus–nucleus collisions, as well as on emergent QCD phenomena in high-multiplicity proton–proton and proton–nucleus collisions.
The purpose of the Rencontres de Moriond is to discuss recent findings and new ideas in physics in a pleasant, relaxed and convivial atmosphere. The 2025 edition will take place in the pleasant winter sports resort of La Thuile in the Italian Alps, and will cover Electroweak Interactions & Unified Theories; Quantum Mesoscopic Physics; Gravitation; and QCD & High Energy Interactions.
The XXXI International Workshop on Deep Inelastic Scattering and Related Subjects (DIS2024) will be organized in Grenoble, France, from April 8 to April 12, 2024.
The conference covers a large spectrum of topics in high energy physics. A significant part of the program is devoted to the most recent theoretical advances and results from large experiments at BNL, CERN, DESY, FNAL, JLab and KEK.
The venue of the workshop is the Maison MINATEC congress center which is part of the scientific area Grenoble Presqu’Île close to the city center.
For information on the venue and accommodations, use the “UCLA Conference Website” link to the left or go to https://conferences.pa.ucla.edu/dark-matter-2023
For registration, please click on the “Registration” option on the left of this Indico page. After you register on this website, to pay for the registration and/or additional banquet tickets, please use the “Registration-Payment” link to the left or https://commerce.cashnet.com/DARKMATTER
Please note that the early registration fee ($600) will change on Jan. 31st, 2023, at 16:00 (4pm) Pacific Time into our regular registration fee ($650) until March 8th at the same time. After which, the late registration fee ($700) will be charged. We encourage participants to register as early as possible to facilitate our planning.
The purpose of this workshop is to bring together scientists with different backgrounds and expertise to discuss open problems, recent developments and future directions in axion physics, a field that is notoriously replete with interdisciplinary connections. The aim is to foster a fruitful cross breeding between different theoretical areas, with a focus on certain open issues in axion particle physics, astrophysics and cosmology. Quantitative assessments of the axion contribution to Cold Dark Matter (CDM) involve top-notch lattice simulations of non- perturbative QCD effects, as well as of the cosmic evolution of axionic topological defects. Astrophysical observations provide strong bounds on axion properties because stellar evolution would be affected by the existence of axions and, intriguingly, some excesses in star energy losses have been reported. Cosmological scenarios in which the PQ symmetry is broken before inflation foresee axions imprints in the CMB, while in post-inflationary scenarios axion miniclusters, with overdensities several orders of magnitude larger than the local density of CDM, are expected to form, and a reliable assessment of their properties is of utmost importance. From the experimental side, a blossoming of potentially game-changing ideas, with an exciting crossover from experimental particle physics to materials science and cutting-edge technologies is inspiring new methods for axion searches. Novel techniques have been put forth that, besides exploiting the axion- photon coupling, aim to reveal axions via their couplings to nucleons and electrons. The interaction between the experimental and theoretical communities will foster the merging of ‘how to search’ with ‘where to search’ into optimized strategies to hunt for the axion.
This four-week programme brings together world-leading experts working at the intersection of quantum-information sciences (QIS) and high-energy physics (HEP), with a focus on quantum simulation, quantum machine learning, and tensor networks. Each represents an area with outstanding problems, or where imminent significant progress is anticipated. Quantum algorithms are predicted to outperform classical algorithms, and quantum hardware continues to improve in scale, reliability, and applicability. With advances in theory, algorithm, and hardware over the past decade, the interest in applying QIS paradigms to answer questions in HEP has surged. Quantum simulation of HEP will enable studies of large entangled Hilbert spaces and offers a solution to the sign problem, situations where classical methods appear insufficient. The physics applications span many HEP topics: realtime dynamics of matter in and out of equilibrium in collider experiments and early universe, nonperturbative inputs into event generators for the LHC and beyond, predicting the QCD equation of state for LIGO and astrophysics, and insights into quantum gravity and black-hole physics. In recent years, progress has been made in finding efficient formulations, realistic analog proposals, nearand far-term digital algorithms, and small hardware demonstrations. Developing a clear understanding of where the boundary of quantum advantage lies in HEP simulations is an objective of the community in the coming years.Today, machine learning is a vital tool for big data analysis. Consequently, quantum machine learning has the potential to further enhance, speed up or altogether change the process of data analysis. Existing applications of quantum machine learning to high-energy physics include supervised classification tasks for reconstructed objects or processes, e.g. signal discrimination, anomaly detection methods, and particle track reconstruction. Tensor networks can be thought of as a data compression protocol to describe quantum systems by representing wave functions through a network of properly dovetailed interconnected building blocks. These networks are found to provide accurate encodings of the relevant properties, including quantum entanglement: they have been shown to provide insights in regimes where Monte Carlo simulations are not always applicable, such as finite-density of fermions and real time dynamics, while facing challenges in higher dimensional systems. These and related developments may allow researchers to apply tensor networks to a wide class of problems in high-energy physics, and to take advantage of them in benchmarking and guiding quantum-simulation protocols.
The flavor physics community is eagerly awaiting the upcoming LHCb and Belle II results, which are expected to deepen our understanding of the Standard Model (SM) flavor sector. During the coming years, a vast amount of new experimental analyses will be presented, providing a rich environment for discussion among theorists and experimentalists. The goal of this Scientific Program is to bring these two communities together to discuss recent experimental results and their theoretical interpretation, as well as new directions for future LHCb and Belle II measurements. In each week of the program, the first day will be dedicated to overview talks presenting the current status of the field. This will set the foundations for the rest of the program, which will contain ample time for discussions.
The theme of this symposium will be “Data Science for Cross-Disciplinary Research”, which will bring together ~150 computational scientists in the fields of physics, biology and engineering in a discussion of how computational methods can be used in these multidisciplinary fields, and bring opportunities for new collaborations.
Sofia Vallecorsa, an expert in Machine Learning and Quantum Computing at CERN openlab, will be the opening keynote speaker.
The CDCS is a new interdisciplinary joint facility of the Universität Hamburg, Deutsches Elektronen-Synchrotron (DESY), and the Hamburg University of Technology, that aims to combine scientific research with state-of-the-art information technology. The CDCS initially consists of four application-focused, cross-disciplinary laboratories (CDLs), which are supported by a Computational Core Unit (CCU). The CDLs focus on the following areas:
- Computational Astro and Particle Physics
- Computational Photon Science
- Computational Systems Biology
- Computational Controls of Accelerators.
The overall aim is to significantly strengthen the conditions for excellent research at the SCHB in the field of computation. The CDCS symposium is projected to present the latest advances in the participating research groups of the CDCS, as well as a venue for new collaborations and unconventional, cross-disciplinary problem solving.