Despite many negative searches during the last decade and more, supersymmetry (SUSY) remains a popular extension of the Standard Model (SM). Not only can SUSY accommodate dark matter and gauge–force unification at high energy, it offers a natural explanation for why the Higgs boson is so light compared to the Planck scale. In the SM, the Higgs boson mass can be decomposed into a “bare” mass and a modification due to quantum corrections. Without SUSY, but in the presence of a high-energy new physics scale, these two numbers are extremely large and thus must almost exactly oppose one another – a peculiar coincidence called the hierarchy problem. SUSY introduces a set of new particles that each balances the mass correction of its SM partner, providing a “natural” explanation for the Higgs boson mass.

Thanks to searches at the LHC and previous colliders, we know that SUSY particles must be heavier than their SM counterparts. But if this difference in mass becomes too large, particularly for the particles that produce the largest corrections to the Higgs boson mass, SUSY would not provide a natural solution of the hierarchy problem.

New SUSY searches from ATLAS using data recorded at an energy of 13 TeV in 2015 and 2016 (some of which were shown for the first time at SUSY 2017 in Mumbai from 11–15 December) have extended existing bounds on the masses of the top squark and higgsinos, the SUSY partners of the top quark and Higgs bosons, respectively, that are critical for natural SUSY. For SUSY to remain natural, the mass of the top squark should be below around 1 TeV and that of the higgsinos below a few hundred GeV.

ATLAS has now completed a set of searches for the top squark that push the mass limits up to 1 TeV. With no sign of SUSY yet, these searches have begun to focus on more difficult to detect scenarios in which SUSY could hide amongst the SM background. Sophisticated techniques including machine learning are employed to ensure no signal is missed.

First ATLAS results have also been released for higgsino searches. If the lightest SUSY particles are higgsino-like, their masses will often be close together and such “compressed” scenarios lead to the production of low-momentum particles. One new search at ATLAS targets scenarios with leptons reconstructed at the lowest momenta still detectable. If the SUSY mass spectrum is extremely compressed, the lightest charged SUSY particle will have an extended lifetime, decay invisibly, and leave an unusual detector signature known as a “disappearing track”.

Such a scenario is targeted by another new ATLAS analysis. These searches extend for the first time the limits on the lightest higgsino set by the Large Electron Positron (LEP) collider 15 years ago. The search for higgsinos remains among the most challenging and important for natural SUSY. With more data and new ideas, it may well be possible to discover, or exclude, natural SUSY in the coming years.