Quark Matter 2025 is the XXXI international conference on ultra-relativistic nucleus–nucleus collisions, which will be held in Frankfurt, Hesse, Germany. This conference brings together theoretical and experimental physicists from around the world to discuss new developments in high-energy heavy-ion physics. The focus of the discussions is on the fundamental understanding of strongly-interacting matter at extreme conditions, as formed in ultra-relativistic nucleus–nucleus collisions, as well as on emergent QCD phenomena in high-multiplicity proton–proton and proton–nucleus collisions.
The international CHARM 2023 conference will be held in Siegen, Germany from July 17 to July 21, 2023, hosted by the University of Siegen as an in-person event with in-person presentations only.
The purpose of the CHARM 2023 Workshop is to bring together theorists and experimentalists working in charm physics to discuss recent results in this area, including the impact on and from theory as well as projections for results to be expected from upcoming experimental facilities.
This year’s conference will cover the following topics:
- Charm facilities – Status and future
- Charmed meson and baryon spectroscopy
- Exotic hadrons
- Production of charm and charmonia
- Hidden and open charm in media
- Light hadronic spectroscopy from decays of charm and charmonia
- Leptonic, semileptonic rare charm decays (including form factors, BSM models, LFV)
- Rare charm decays to photons, neutrinos and invisibles (dark photons, axions)
- Hadronic charm decays and CP-violation
- D mixing
- Tau lepton physics
- Averages for HFLAV and PDG
CLFV 2023: The 4th International Conference on Charged Lepton Flavor Violation
Searches for charged lepton flavor violation are powerful probes of new physics. In three days of plenary talks, this Conference will examine the theoretical status of charged lepton flavor violation models, present recent experimental results along with their impact on the theoretical landscape, and discuss prospects for the coming round of experiments.
- The conference is held from 20.-22. June at Heidelberg University on the campus Neuenheimer Feld.
- An excursion is planned on June 23rd.
- Registration will be closed on June 5th.
- All talks are plenary and by invitation only.
- The deadline for abstract submission for posters is June 9th.
A major goal in strong-interaction physics is to understand the nature of hadrons, which make up visible matter, and much research activity revolves around two fundamental questions: what are hadrons made up of and how does Quantum Chromo-dynamics (QCD), the strong-interaction component of the Standard Model, produce them? Although these questions are simple, the answers may not be. To address these questions, spectroscopy is a valuable and time-honored tool, as it enables us to understand the structure of mesons, baryons and exotics and how they are produced. In this context, the recent discovery of many new hadronic states, in particular the plethora of observed X, Y, Z states, is exciting, as these objects challenge the commonplace view of hadrons as either quark-antiquark or three-quark color-singlet states.
Experimental investigations of the hadron structure and spectrum are performed via hadron-hadron scattering processes, photo- and electro-production by nucleons or, more recently, by means of heavy-meson decays at world-wide accelerator facilities. In the last decade, these investigations have yielded an enormous amount of data, which have vastly improved our knowledge of the baryon and meson spectrum and enabled us to establish the existence of new states, together with an empirical determination of their angular momentum, content, and spin. Recent highlights are observations of multi-quark states outside our well-known hadronic pictures, which have been interpreted as the long sought-after penta- and tetraquark systems.
However, identifying new states and their quantum numbers requires complex analysis (so-called partial wave analysis), which sometimes relies on model assumptions. For many of the new states, we still do not know the quantum numbers. Different theoretical models for the structure of the new states give different predictions of their quantum numbers. Therefore, the composition of many states remains controversial. Indeed, some of these newly discovered hadrons seem to fit the picture of compact multi-quark states, while others may qualify as molecular states or both, i.e. the superposition of a constituent-quark core and a meson cloud, and one of the main goals of this workshop will be to discuss how to distinguish them.
This four-week programme brings together world-leading experts working at the intersection of quantum-information sciences (QIS) and high-energy physics (HEP), with a focus on quantum simulation, quantum machine learning, and tensor networks. Each represents an area with outstanding problems, or where imminent significant progress is anticipated. Quantum algorithms are predicted to outperform classical algorithms, and quantum hardware continues to improve in scale, reliability, and applicability. With advances in theory, algorithm, and hardware over the past decade, the interest in applying QIS paradigms to answer questions in HEP has surged. Quantum simulation of HEP will enable studies of large entangled Hilbert spaces and offers a solution to the sign problem, situations where classical methods appear insufficient. The physics applications span many HEP topics: realtime dynamics of matter in and out of equilibrium in collider experiments and early universe, nonperturbative inputs into event generators for the LHC and beyond, predicting the QCD equation of state for LIGO and astrophysics, and insights into quantum gravity and black-hole physics. In recent years, progress has been made in finding efficient formulations, realistic analog proposals, nearand far-term digital algorithms, and small hardware demonstrations. Developing a clear understanding of where the boundary of quantum advantage lies in HEP simulations is an objective of the community in the coming years.Today, machine learning is a vital tool for big data analysis. Consequently, quantum machine learning has the potential to further enhance, speed up or altogether change the process of data analysis. Existing applications of quantum machine learning to high-energy physics include supervised classification tasks for reconstructed objects or processes, e.g. signal discrimination, anomaly detection methods, and particle track reconstruction. Tensor networks can be thought of as a data compression protocol to describe quantum systems by representing wave functions through a network of properly dovetailed interconnected building blocks. These networks are found to provide accurate encodings of the relevant properties, including quantum entanglement: they have been shown to provide insights in regimes where Monte Carlo simulations are not always applicable, such as finite-density of fermions and real time dynamics, while facing challenges in higher dimensional systems. These and related developments may allow researchers to apply tensor networks to a wide class of problems in high-energy physics, and to take advantage of them in benchmarking and guiding quantum-simulation protocols.
The flavor physics community is eagerly awaiting the upcoming LHCb and Belle II results, which are expected to deepen our understanding of the Standard Model (SM) flavor sector. During the coming years, a vast amount of new experimental analyses will be presented, providing a rich environment for discussion among theorists and experimentalists. The goal of this Scientific Program is to bring these two communities together to discuss recent experimental results and their theoretical interpretation, as well as new directions for future LHCb and Belle II measurements. In each week of the program, the first day will be dedicated to overview talks presenting the current status of the field. This will set the foundations for the rest of the program, which will contain ample time for discussions.
The theme of this symposium will be “Data Science for Cross-Disciplinary Research”, which will bring together ~150 computational scientists in the fields of physics, biology and engineering in a discussion of how computational methods can be used in these multidisciplinary fields, and bring opportunities for new collaborations.
Sofia Vallecorsa, an expert in Machine Learning and Quantum Computing at CERN openlab, will be the opening keynote speaker.
The CDCS is a new interdisciplinary joint facility of the Universität Hamburg, Deutsches Elektronen-Synchrotron (DESY), and the Hamburg University of Technology, that aims to combine scientific research with state-of-the-art information technology. The CDCS initially consists of four application-focused, cross-disciplinary laboratories (CDLs), which are supported by a Computational Core Unit (CCU). The CDLs focus on the following areas:
- Computational Astro and Particle Physics
- Computational Photon Science
- Computational Systems Biology
- Computational Controls of Accelerators.
The overall aim is to significantly strengthen the conditions for excellent research at the SCHB in the field of computation. The CDCS symposium is projected to present the latest advances in the participating research groups of the CDCS, as well as a venue for new collaborations and unconventional, cross-disciplinary problem solving.
Every three years, the International Committee for Future Accelerators (ICFA) organises a seminar on “Future Perspectives in High Energy Physics”. This is a four-day international exchange of information concentrating on plans for future facilities in the field of particle physics. This by-invitation-only meeting has 250 participants, including directors of most of the world’s major laboratories in our field, senior particle and accelerator physicists, and government science officials from several countries.
The 13th ICFA Seminar on Future Perspectives in High -Energy Physics is organised by the Deutsches Elektronen-Synchrotron DESY.